EUROPHYSICS LETTERS 15 December 1986
Europhys. Lett., 2 (12), pp. 913-918 (1986)

Mean-Field Equations for the Matching and the Travelling
Salesman Problems.

M. MEZARD

Laboratoire de Physique Théorique, Ecole Normale Supérieure
24 rue Lhomond, 75231 Paris Cedex 05, France

G. PARIsI

Dipartimento di Fisica, Universita di Roma II, Tor Vergata
Via Orazio Raimondo, 00179 Roma, Ttaly

(received 11 June 1986; accepted 21 August 1986)

PACS. 05.20. — Statistical mechanies,
PACS. 75.50. — Studies of specific magnetic materials.

Abstract. - The matching problem and the travelling salesman problem are investigated in very
high dimensions using mean-field equations valid for one given sample. The same results of the
replica approach are consistently found. Some applications of these results to the two-
dimensional case are briefly discussed.

Quite recently [1-3] the matching problem and the travelling salesman problem (in the
case where the distances are random variables) have been studied using the replica
approach in the thermodynamic limit (infinite number of points). The solution to both
problems has been found under the hypothesis that the replica symmetry is not
broken [1, 3].

In the nutshell if replica symmetry is not broken [4], the quasi-optimal solutions coincide
with the optimal one; more precisely, if we consider a problem with N points (N large), we
call a configuration quasi-optimal, if the relative difference of the cost functions of this
configuration and of the optimal solution is proportional to 1/N. The replica symmetry is
broken if there is (with probability one for large N) a quasi-optimal configuration which
differs from the optimal one in a number of points proportional to N.

Roughly speaking, if we neglect the relative differences in the cost funetions of two
configurations which are order 1/N and we consider that two configurations, which differ
one from the other in a set of points whose number increases less than linearly in N, are
identical, then the replica symmetry is not broken if the optimal solution is unique. More
detailed investigations are needed to clarify the correctness of this crucial assumption.

The aim of this note is to show how the results of the replica approach can be obtained by
studying simple mean-field equations. In this way we establish a probabilistic interpretation
of the results of the replica approach.
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We start by defining the two problems: in both cases we have N cities (points): d; i is the
cost for travelling between the city ¢ and the city k (here we keep to the case where diisa
symmetric matrix). The d;; are assumed to be independent random variables with a
probability distribution P(d) such that

P(d)=d"/r! for d—0. (1)

Each choice of the d; j is an instance of the problem. A configuration of the system is a set
of N/2 (N must be even) links which connect pairwise all points for the matching problem or
a closed line which goes through all the points (this line contains N links) in the case of the
travelling salesman problem. The cost (or energy) of a configuration H(C) will be the sum of
the cost of all the links (in order to lighten the notation we have not indicated the
dependence of H(C) on the d’s). ‘

In both cases we can define a partition function Z and a free energy F (at given d; ;) in the
usual way:

Zld,Bl= %exp[—,@N“‘H(C)] ) Fld,pl=—(@EN)'InZ , (2)
{
where the sum is done over all configurations C and ¢ = (1 + 7). We notice that & has been
chosen in such a way [5] that F' is of O(1) when N — o and it depends on j in a nontrivial way.
We want to compute the value F() of the average (on all the possible choices of the
distances d; ;. according to the probability distribution equation (1)) of the free energy
F[d, £] in the limit N— . It is believed that for a generic instance and for a sufficiently
large value of N:

lim F(8) = min N*-2H(C) , ®

so that F(«) is related to the cost of the optimal configuration (a well-known optimization
problem).

In ref. [1,3] the problem was solved (under the hypothesis of no replica symmetry
breaking) by introducing a set of auxiliary quantities @, (p going from 1 to «). An auxiliary
free energy F(Q, ) can be written as function of the @’s and the value of the free energy
F(B) is the value of F(Q, ) at the point where it is stationary with respect to the @’s. In
other words we have to solve the equations

AF/BQr =0, 4)

and evaluate F(Q, ) at the solution of eq. (4).

Here we use a different approach: we want to derive mean-field equations (of the TAP
type [6]) and solve them under the hypothesis of the uniqueness of the thermodynamic state.
In spin glasses this approach gives the same results as the replica approach based on no
replica symmetry breaking. In this respect we have been strongly stimulated by ref. [7],
although our approach is technically different from the one of this last paper.

It is convenient to consider an auxiliary model in which a m-component spin ¢ (i=1, N,
a =1, m) of modulus m( 3 (of)*=m) sits at each point i (this procedure is a standard tool in

a=l,m

the study of self-avoiding walks or polymers [8]). The partition function is defined to be

Z=3{]] Q+hspexply2 3 3 Rioldatl}, R, =exp[-gN°d;;], R,;=0, (5

{0} §=LN i,k=1,N a=lm

where £ is like an external magnetic field.
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It is interesting to consider this model in the limit m going to zero. We use the well-
known fact that the partition function of a m-component spin model can be written in the
limit m— 0 as a sum of contributions of self-avoiding paths.

At b =0, (Z — 1)/m is the sum over all possible closed self-avoiding loops (only one loop at
a time) of the quantity

r*I1Rx » (6)
ik

where L is the length of the loop and the products is done only on the (ordered) pairs 1, k&
which belong to the loop. It is evident that when L =N the weight (6) of the loop is
proportional to the contribution of the same loop to the partition function of the travelling
salesman.

For h#0, in the limit m— 0, the partition function is given by the sum over all open self-
avoiding paths (K paths may be present simultaneously) with the same weight as in eq. (6)
plus an additional factor A%%,

It is easy now to check that in the limit y going to infinity (at zero k) we recover (from
(Z — 1)/m) the partition function of the travelling salesman, while in the limit /& going to
infinity (at nonzero y) we recover (from Z) the matching problem (if we send y to infinity at a
fixed value of a=h?y, we obtain a model whose free energy interpolates between the
travelling salesman (az— ) and the matching (x— 0)). We can now write the generalized
TAP equations for the model and later we will specialize them to the two different cases.

Let us suppose that we have a spin model with N sites with the partition function (5),
such that

<c1%>=mis (7)

the other components of ¢ have zero expectation values. We also assume that at a given
temperature there is only one equilibrium state (no breaking of the replica symmetry and
the connected correlation functions are so small (e.g. O(1/N)) that they can be neglected.

The strategy consists in comparing the properties of two systems of N and N + 1 spins
which have N spins in common and imposing that the properties of the last system coincide
with that of the first one [9].

Under these assumptions, if we add a new site to the N-sites system, it is easy to see that
generalized Bethe formulae are valid, in particular we find that the magnetization of the new
spin (i.e. the spin at N + 1, my 1) can be written as a function of the costs for going from the
(N + 1)-th site to each of the others N sites and of the magnetizations of the others N sites of
the system before the new spin has been added (these magnetizations will be called «cavity
magnetizations» and they will be denoted as mf, i=1, N).

For generic m the formulae would be very complicated; fortunately strong simplifications
are present in the limit m—s 0: they are mainly due to the relation (¢})* = 0 for k > 2; in other
words o} is a nihilpotent quantity (this result can be understood using the supersymmetric
representation of the nonlinear o-model for m = 0[10]).

The results further simplify in the two limits (A— o, or y— o« at k= 0); we finally find
after an appropriate rescaling of the magnetization (from now on we have that m; = (o} }/h'?
and m; = {(a})/y"2, respectively, in the matching and in the travelling salesman cases):

My =( Y Ry ime)™! (matching),
iSLN ®

My =( 2 Byw,im)/(( Y  Ryw,imd Byimi) (travelling salesman) .
i=1,N 1si<k=N
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We also find that the probability (%x. ;) that the link from N + 1 to i is occupied, is given
by

y41,i = By, im D Ry em§) (matching),
k=1,N

€)

s, i=Bne, M Y Byapyemi)( Y Ryyy;mf Ry ami)™  (travelling salesman) .
" J=LN;J#i lsj<k=N

After sample averaging the probability distribution of the magnetization in the system
with N or N + 1 sites must be the same; if we recall that the magnetizations are independent
random variables with probability distribution P(m), we easily see that eq. (8) implies a
complicated integral equation for the function P(m), which we do not dare to write down
explicitly. In this way the model is solved and the probability distribution P(m) can be found
numerically by iterating the integral equation for the probability distribution which is
induced by eq. (8). Equation (9) can be used to compute the expectation value of the cost
function.

It is interesting to see the connection with the replica approach: if we define the quantity

Qi as

Q.= (@) [ dm P(mym* , (10)

it is possible to check (in full generality for the matching problem, in many particular cases
for the travelling salesman problem) that the @'s must satisfy the equations which were
found in the replica approach. In this way we have obtained a direct derivation of the results
of the replica approach.

Altough the analytic treatment of the model can be done in the best way in the cavity
approach where the magnetization at the site N+ 1 is computed in terms of the
magnetizations of the other N sites when the spin at site N + 1 is removed, it is interesting
to write down the equations in terms of the magnetizations after the site N + 1 is added to
the system; in this way we obtain some kind of generalized TAP equations.

If we compute the magnetizations (m;) of one of the N sites (e.g. ©) in the presence of the
new site as a function of the (cavity) magnetizations (i.e. m§, j =1, N) of the N sites before
the new site is added, we find that it can be written in the matching case (for the points i
such that By, ; is of order 1, not of order 1/N or smaller) as

m;=mi(l —nni1) , (11)

where 7y ; is given by eq. (9). It is evident that the relative difference between m; and m$
is very small in most of the cases, but in some cases it will be very important; therefore, we
cannot, as in the spin glass case, perform a perturbative expansion in this difference.

If now we compute the n’s as functions of the m’s we have a closed set of equations in
which there is no reference to the cavity fields which have been used to derive them; we
finally get

ik (1= 1) = MR ymy, , m)'=( ¥ Rym/d—my). (12)

k=1N;k#i

In the case of the travelling salesman the situation is more complex; if we try to obtain
the generalization of eq. (11) to this case, it turns out that also the quantities ¢; defined by
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((e})?) are important here. After some work one finds that

[ =qi(l—ny,,),
c q‘c
m; = m; (1 = nN+1,i) = _:'nN+l,i ’
s

1

M = My Ry ;ms — gy, Bysi1imd)?, as)

va=[ 3 Ry ymRy,y omg]™! .

Isj<k<N

N
M1 = Qg 2 RN+1,1mf' (see (8)) .
i=1

The elimination of the cavity expectation values (m) is not easy here. However, by
studying carefully what happens when two spins are added together to the system, we find
the very interesting formuls

mfm = [R'ji gim+ (1 — Ny) m][(1— nej)z = (Rij)2 g fi"j]—1 , : (14)

where mi® is the expectation value of g in the absence of the spin at the site 1.
The matrix n; ;, does not look symmetric, however it has been derived starting from the
symmetric relation

ik = m§® Ry meD/(1 + mE®O R, mgD) | (15)

It is certainly interesting to investigate analytically and numerically the question of how
y solutions does eq. (12) have and which are the properties of these solutions. As these

space (for simplicity in a hypercube of side 1) and the cost for travelling from one point (3) to
an other point (k) depends on the usual Euclidean distance lix. For example, we can
consider the model where ik = (;2)”""*D, D being equal to the dimensions of the space and
7 being a parameter characterizing the model. The most studied model in the literature
corresponds to D=2, r=1],

An elementary computation shows that if we neglect the correlations between three or

re distances (two distances are always uncorrelated), this model coincides (apart from a
trivial rescaling) with the one considered in this paper (an intuitive argument, which we

(16)

Matching: n12 (r=0), 0.323 (r=1),
Travelling salesman: 0.66(r=0).

The number for the matching with »=1 compares well with the numerical data: 0.322
(the numbers for =0 are unfortunately unavailable).
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We finally remark that another interesting model which is a generalization of the usual
matching problem is the following: each city must be connected to other K cities and we
want to minimize the total cost of connections; for K =1 we recover the usual matching.

If we stick our attention to this generalized matching problem for K=2, we can
distinguish among two cases: a city can (case a)) or cannot (case b)) be connected twice to the
same city. It is possible to prove in the replica approach (and also a direct argument can be
constructed) that, when the correlations among the distances (and consequently among the
costs) are neglected, the free energy of this generalized matching problem for K = 2 is (apart
a factor 2) the same of the matching (in case a)) or the same as the travelling salesman model
(in case b)). '

It seems that the most interesting models of this class are the generalized matching in
which a city may be connected only once to the same city and consequently it must be
connected to K different cities. It is very easy to apply our approach to this case; for K=3
we consider the following partition function:

Z= 3 {Il ggxexply2 3 Rip 3 [ofok+fef+212¢]]} an

{mna} j=LN i,k=1N a=1,m

(a similar partition function can be written also for K =2).
Using the same technique as before, we readly obtain the following equation for K = 3:

My =( > RNH,:' mieRNJrl,kmkc)( 2 RN+1,imicRN+l,k mchN+1,jmj€)ﬁ1 . (18)

1si<ksN 1=i<k<j=N

Similar equations can be obtained for higher values of K. A detailed study of these
equations goes beyond the aims of this note.

* % %
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