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3Aix Marseille Université, CNRS, CINAM, Turing Center for Living Systems, 13288 Marseille, France
4PMMH, CNRS, ESPCI Paris, PSL University,
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In living cells, proteins self-assemble into large functional structures based on specific interactions
between molecularly complex patches. Due to this complexity, protein self-assembly results from a
competition between a large number of distinct interaction energies, of the order of one per pair of
patches. Current self-assembly models however typically ignore this aspect, and the principles by
which it determines the large-scale structure of protein assemblies are largely unknown. Here, we
use Monte-Carlo simulations and machine learning to start to unravel these principles. We observe
that despite widespread geometrical frustration, aggregates of particles with complex interactions
fall within only a few categories that often display high degrees of spatial order, including crystals,
fibers, and micelles. We then successfully identify the most relevant aspect of the interaction com-
plexity in predicting these outcomes, namely the particles’ ability to form periodic structures. Our
results provide a first characterization of the rich design space associated with identical particles
with complex interactions, and could inspire engineered self-assembling nanoobjects as well as help
understand the emergence of robust functional protein structures.

Multiple copies of a single protein often self-assemble
to fulfill their biological functions [1]. The resulting as-
sembly morphologies may be complexes of a few sub-
units, e.g., membrane channels, large but finite higher-
order assemblies akin to viral capsids, or unlimited
structures such as cytoskeletal fibers [2]. The interac-
tions between individual proteins are dictated by the
amino-acids at their surface. These interact through a
wide range of physical effects, including hydrophobic-
hydrophilic interactions, polar and electrostatic forces
as well as steric repulsions and shape complementar-
ity [3–6], implying a wide range of interaction affinity
and specificity [7–9]. Despite the complexity of these
interactions, the products of protein aggregation over-
whelmingly fall into a small number of stereotypical
aggregate morphologies. These include oligomers [10],
one-dimensional fibrillar structures [11–13], and liquid
condensates of finite [14] or unlimited three-dimensional
sizes [15]. Three-dimensional crystals are also observed
in vivo [16], and widely used in vitro to crystallograph-
ically investigate protein structure [17–19]. These mor-
phologies thus display a range of different dimensional-
ities and orientational order of the proteins.
The relationship between the molecular structures of

the protein surfaces that come into contact upon bind-
ing – which we refer to as “patches” in the following –
and the morphology of the resulting aggregates is not
well understood. It is for instance difficult to discrim-
inate between the amino-acids that are involved in a
protein-protein interaction and those that remain un-
bound [20, 21]. On a more practical level, we lack
an effective framework to predict protein crystalliza-
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tion as a function of solvent conditions [18]. When
a well-defined aggregate morphology is obtained, it is
typically sensitive to subtle changes in interprotein in-
teractions. A single mutation can thus trigger the self-
assembly of a soluble protein into fibers in vitro [22].
In vivo, proteins found in different organisms with al-
most identical morphologies may nonetheless assemble
through completely different patches [23–25]. Many pro-
teins are thus increasingly believed to be equipped with
multiple competing sticky patches which may or may
not dominate the final assembly depending on poten-
tially subtle factors. This competition may underpin
the widely observed structural polymorphism in protein
self-assembly [26, 27].

A popular theoretical approach to the relationship
between protein interactions and the resulting self-
assembly phase diagram is the use of so-called patchy
particle models, where anisotropically patterned parti-
cles interact through a small set of short-range inter-
actions [28]. Varying the number and the position of
sticky patches on the particles influences both the ori-
entational order of the particles locally [29, 30], and the
dimensionality and size of the aggregate [31, 32]. Patchy
particle models are useful for predicting the morphol-
ogy resulting from the assembly of some specific pro-
teins [33]. However, there is no systematic understand-
ing of the relationship between the particle interactions
and the aggregate morphology.

Existing theoretical approaches to protein self-
assembly leave a crucial aspect of protein interactions
largely unexplored: the fact that pairs of patches have
essentially independent interaction energies, due to both
the variety of physico-chemical interactions involved and
the combinatorial complexity of patch geometries. In
this sense, their interactions are non-transitive: the fact
that two patches stick to a third does not necessar-
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Figure 1. Complex asymmetric interactions lead to
geometric frustration. (a) Particles are asymmetrically
patterned with ”lock-and-key” interacting patches. The ar-
row and colors indicate the particle orientation. (b) Each
pair of patches is governed by its own interaction strength,
resulting in a large number of independent interactions. For
instance, the squared-lock and the round-lock both bind to
the round-key, but not with each other. (c) When a particle
interacts with two others through two of the best interac-
tions, this leads to an unfavored interaction between these
two neighbors. (d) An alternative, possibly more favorable
arrangement gives up one of the best interactions to avoid
the resulting unfavored interaction.

ily imply that they would stick to (or repel) one an-
other. To illustrate the complex interplay resulting from
the interaction between competing patches, in Fig. 1(a)
we consider a particle that is asymmetrically patterned
with three types of patches whose interactions are de-
tailed in Fig. 1(b). The complexity of these interac-
tions makes them pair-specific, and one cannot be de-
duced from the knowledge of the others: a particle with
n distinct patches has ∼ n2 independent pair interac-
tions between patches, in contrast with simple interac-
tions governed by a single scalar quantity such as the
electrical charge, which would result in only ∼ n inde-
pendent interactions. Such a large set of interactions
generically gives rise to a competition between compet-
ing local structures, all involving some suboptimal inter-
actions [Fig. 1(c-d)]. Optimizing the morphology of the
aggregate in the presence of this so-called frustration is
a notoriously nontrivial task and usually results in poly-
morphism [34, 35]. Geometrical frustration leads to size
limitation of the aggregate in other contexts, such as
the self-assembly of elastically deformable particles in
two and three dimensions [36–38]. It also influences the
crystalline order in lattice particles [39, 40].
In this paper, we investigate how a large number

of independent interactions influences the morphologies

formed by self-assembling lattice particles. In Section I,
we introduce a minimal lattice-based model with 21 in-
dependent continuous interaction parameters and show
that it produces a range of aggregates morphologies in
numerical simulations. We then use machine learning
in Section II to show that despite the complexity of the
interactions, the resulting morphologies can be grouped
within a small number of categories with the same ag-
gregate dimensionality and orientational order. Parti-
cles with highly asymmetric interactions can result in
nontrivial morphologies reminiscent of those found in
proteins, e.g. fibers or self-limited assemblies, and in
Section III we show that such aggregates typically form
as a way to avoid geometrical frustration. Finally, Sec-
tion IV presents a first foray in understanding the re-
lationship between particle interactions and aggregate
morphology by using machine learning to compare the
prediction accuracy of different descriptors, each aimed
to isolate specific features of our interaction parameters.

I. ARBITRARY INTERACTIONS YIELDS
DIVERSE AGGREGATES MORPHOLOGIES

We design a minimal model of particles with direc-
tional interactions, each of them of arbitrary strength
and sign. As shown in Fig. 2(a), we consider identical
hexagonal lattice particles on a triangular lattice. Two
neighboring particles who come into contact through
their faces a and b (a, b ∈ [1..6]) experience an interac-
tion energy Jab. We denote the set of all interactions
as J , and refer to it as the “interaction map” of the
problem. Without loss of generality, we set the thermal
energy kBT to one and all interaction energies between
a particle and an empty site to zero (Appendix B 1), im-
plying that J fully characterizes the energetics of a sys-
tem of particles. There are 6×6 pairs of faces, but since
Jab = Jba by symmetry, J has only 21 non-redundant
elements corresponding to the interactions schematized
in Fig. 2(b). This large number of independent energies
allows us to capture the large complexity illustrated in
Fig. 1 without reference to the microscopic physical ori-
gin of each interaction.

To characterize the influence of J on particle self-
assembly, we look for the equilibrium state of low-
density systems in the canonical (NVT) ensemble using
Monte-Carlo simulated annealing. We verify that the
simulation results do not depend on the chosen anneal-
ing duration and particles’ density (Appendix B 2).

We first illustrate the range of possible outcomes of
the simulations in Fig. 2(c) by choosing eight stereo-
typical interaction maps, which we pictorially depict in
the corner of each panel. In panel (1), a fully isotropic
and attractive interaction map produces a compact ag-
gregate devoid of orientational order akin to a liq-
uid droplet. By contrast, panel (2) present a highly
anisotropic, attractive interaction map that promotes
the alignment of the particles and produces an orienta-
tionally ordered crystal. Interaction map (3) also pro-
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Figure 2. Simple sets of local interactions lead to a large diversity of aggregates (a) Lattice particles interact
through their six patch-like faces. The interaction depends on the particles’ relative orientations. (b) The set of all possible
interparticle orientations can be represented in a symmetric 6× 6 matrix. The contents of the matrix-like interaction map J
can thus be summarized by specifying the lower triangular part of this matrix. (c) Equilibrium configurations of systems of
50 particles for eight easily interpretable interaction maps. The lower triangular part of the interaction map J is represented
in the lower left corner of each panel, with dark blue, blue and white squares respectively representing interactions energies
Jab = −10, −3 and 0 in units of kBT . The labels on the bottom right of each panel indicate our nomenclature of the
morphologies.

motes a small number of particle contacts, but unlike
in the previous example these can only be realized in
particles with different orientations, resulting in the for-
mation of a sponge-like morphology. If a particle only
has sticky patches located opposite each other, it forms
a fiber as in panel (4). In the presence of relatively weak
interactions, the entropic gain associated with isolated
particles can lead to compact, orientationally ordered
morphologies such as the crystallite of panel (5). In
panel (6), finite-size aggregates form for a different rea-
son: the particle’s preference to expose some of their
faces to the surface of the aggregates, reminiscent of the
formation of micelles in surfactants. Finally, a single at-
tractive interaction favoring misaligned particles yields
hexamers in panel (7), and the absence of interactions in
panel (8) results in a gas. These categories recapitulate
many morphologies observed in aggregates of proteins
or patchy particles, thus outlining the ability of com-
plex interactions to induce complex aggregates even in
our comparatively simple lattice-based model.

Beyond these simple examples, we use arbitrary in-
teraction maps to show that our model qualitatively re-
capitulates the effects of the competition between sticky
patches in proteins. In Fig. 3, we thus show two almost-
identical interaction maps leading to very different ag-
gregate morphologies depending on which one of two
competing sets of interparticle contacts is more stable
than the other. To highlight the differences between

these two sets, in each panel we display the contact
map ⟨N⟩, which gives the overall frequency of each pair
of particles in the simulation. While the most frequent
contacts correspond to favorable contacts in the inter-
action map, not all favored interactions are observed.
This demonstrates that having many arbitrary, contin-
uous interaction values leads to a relationship between
interaction map and contact map that is both highly
sensitive and nontrivial.
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Figure 3. Similar interaction maps can lead to very
different aggregate morphologies. The two interaction
maps of panels (a) and (b) have the same favored and un-
favored interactions, yet result in very different final mor-
phologies (a sponge and a fiber per our nomenclature).



4

II. AGGREGATE MORPHOLOGIES FALL
WITHIN A FEW STEREOTYPICAL

CATEGORIES

As aggregate morphologies sensitively depend on the
exact values of the underlying interactions, one may
wonder whether new aggregate categories beyond the
eight pictured in Fig. 2(c) could emerge for a fully gen-
eral interaction map. To begin to answer this question,
here we simulate a large number of randomly chosen in-
teractions maps and classify the resulting morphologies
with the help of a machine learning algorithm.

To guide our exploration, we reason that two major
determinants of a particle’s self-assembly behavior are
its affinity, i.e., its average propensity to stick to other
identical particles, and its asymmetry, i.e., its deviation
from an isotropic interaction profile. Experimentally,
the former can in principle be tuned independently of
the latter through, e.g., depletion interactions. We thus
choose to respectively model the affinity and asymmetry
using two independent parameters µ and σ. We draw
each of the 21 independent parameters of our interac-
tion map independently of the others from the following
Gaussian distribution:

P (Jab) =
1√
2πσ2

exp

[
− (Jab − µ)2

2σ2

]
. (1)

We show typical aggregates resulting from several (µ, σ)
values in Fig. 4. At low asymmetry σ, liquids or
monomers dominate depending on the affinity µ, consis-
tent with the absence of orientational preference of the
particles. Larger values of the asymmetry yield diverse
morphologies. Despite some variability – e.g., the vary-
ing widths and branching rates of the fibers in Fig. 4
– all aggregate morphologies fall within the categories
enumerated in Fig. 2(c) (see labels on each image).

We make our morphological classification more sys-
tematic by generating a large number of interaction
maps and studying the resulting aggregates. We
choose 45 different (µ, σ) couples corresponding to 5
values of affinity and 9 values of asymmetry: µ ∈
{−4,−2, 0, 2, 4}, σ ∈ {0.1, 1, 3, 5, 7, 9, 11, 13, 15}. For
each of these, we generate 200 interaction maps and run
the numerical annealing procedure described above. We
characterize each morphology by computing a few geo-
metric properties, namely the average aggregate size,
porosity, and surface to volume ratio. Out of the result-
ing 9000 aggregate morphologies, we manually classify
693 randomly chosen ones within our eight categories.
As is apparent from Supplementary Figs. 13 to 20, we
do not find the need for any new category during this
process. We then use this manually labeled set of cat-
egorical data to train a simple feedforward neural net-
work to predict the label of a given aggregate morphol-
ogy using the corresponding interaction map, contact
map, and aforementioned geometric properties as de-
scriptors. For any set of descriptors, the network out-
puts a set of eight scores that sum to one, each assigned

to a category. We choose the category with the high-
est score as the classifier’s prediction. This procedure
yields reliable results, with 99.9% correct prediction on
the training set and 99.3% correct predictions on the
test set (see Appendix A 2 for details on the method and
the classification). We use the network to classify our
whole dataset of 9000 morphologies, and evaluate the
quality of each prediction from the value of the highest
probability, which we refer to as the score of the predic-
tion. An ideal, unambiguous classifier should give scores
close to unity, much larger than the ∼ 1/8th probability
associated with a random classification of categories of
approximately equal sizes. Fig. 5 shows the histogram
of the scores for our classifier with a vertical logarith-
mic scale. For each category, a large majority of the
scores are close to unity, with only 9.5% of the mor-
phologies having a score below 0.9 (4.0% below 0.7).
Low scores typically occur in systems where two mor-
phologies are present simultaneously, as shown in Sup-
plementary Fig. 22. This successful outcome confirms
both that our eight categories are sufficient to classify
our sample of morphologies without significant ambigu-
ities, and that the category that an aggregate belongs
to can be determined by specifying the particle interac-
tions alongside a few geometrical characteristics.
By applying our classifier to all the unlabelled aggre-

gates among our 9000 interaction maps, we conduct an
extensive statistical analysis of the influence of the affin-
ity µ and the asymmetry σ on the aggregate morphol-
ogy. We present our results in Fig. 6, which confirms
the tendencies identified in Fig. 4. Very sticky particles
thus favor the formation of infinite aggregates (liquid,
crystal and sponges, in blue and on the left of the di-
agram), while repulsive, high-symmetry particles form
monomers (the bottom-right of the diagram is mostly
light green). By contrast, nontrivial aggregates form
mostly for particles that are on average repulsive, and
highly asymmetric (upper right region of the diagram).
A more specific characterization however appears diffi-
cult from this data alone, as most values of (µ, σ) within
this region produce very diverse collections of morpholo-
gies.

III. PARTICLES FORM SLENDER, SMALL OR
POROUS AGGREGATES TO AVOID
GEOMETRICAL FRUSTRATION

To further elucidate the relationship between inter-
actions and aggregate morphology within the nontrivial
repulsive/asymmetric region of Fig. 6, we reason that
geometrical frustration (Fig. 1) should penalize the for-
mation of compact crystals and liquid aggregates. Ac-
cording to this reasoning, particles that display many in-
compatible interactions should tend to form aggregates
of lower size, of lower dimensionality, or with higher
porosity.
We define a quantitative measure of frustration whose

design is illustrated in Fig. 7. The interaction map
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Figure 4. Random interactions reproduce the aggregate diversity observed in simple interaction maps. For
each value of affinity and asymmetry, we show a randomly drawn interaction map (bottom left matrix, with the color scale
of Fig. 3), a snapshot of the result of the simulated annealing, and the aggregate category, as in Fig. 2. Here and in the
following, the lattice has 30× 30 sites, and there are 100 particles.

of panel (a) implies a competition between two local
structures. In the first structure, shown in panel (b),
the geometry of the particles imposes a larger-scale
geometrical constraint. Specifically, it imposes that
two favorable interactions can only be obtained at the
cost of an unfavorable one. As a result the motif of
panel (c), which only comprises favorable interactions,
albeit weaker ones, is favored overall. We propose that
the amount of geometrical frustration associated with
an interaction map can be quantified as the amount
of favorable interaction energy that is “lost” due to
the aforementioned geometrical constraints. This quan-
tity can be measured by comparing the equilibrium en-
ergy of a numerical simulation, where these constraints
are present [panel (d)], to a situation where these con-

straints are removed [panel (e)]. To engineer such a
situation, we imagine a mean-field system where each
particle is broken down into its six constitutive faces,
and where all faces are free to associate in pairs irre-
spective of their provenance. As a result, the formation
of the two most favorable interactions no longer forces
an unfavorable interaction, as illustrated in panel (e).

Operationally, for a given interaction map J , we re-
spectively denote by ⟨N (s)⟩ and N (m) the average con-
tact map obtained from our simulations and the contact
map obtained from this new constraint-less free-energy
minimization. We then define our measure of the rela-
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Figure 5. We classify the aggregates without ambi-
guity with machine learning. We show, in log-scale, the
histogram of the predictions scores of the neural-network for
the whole dataset (gray), and for the data classified in each
category (in the insets, the axes are the same as the main
figure). Most of the prediction scores (the probabilities to
belong to the predicted category) are close to unity, suggest-
ing an unambiguous classification.

tive frustration as

f =

〈
E(s)

〉
− E(m)〈

E(s)
〉 , (2)

where the average simulated energy reads〈
E(s)

〉
=

∑
a≤b

〈
N

(s)
ab

〉
Jab (3)

and similarly for E(m).
Our example of Fig. 7 illustrates the putative effect

of frustration on the aggregate morphology. Because
the configuration of panel (b), where all particles are
aligned, is ruled out by frustration, the system tends to
select the more complex configuration of panel (c). This
local configuration could in principle lead to a dense ag-
gregate, e.g., a crystal of alternating particles. In prac-
tice, however, this would require forming additional con-
tacts besides those represented in panel (c), and those
contacts are penalized by weak repulsive interactions
that appear as light red squares in Fig. 7(a). This con-
stitutes a new source of frustration for any hypothetical
dense aggregate. We thus predict that densely packing
such particles in a simulations box without any empty
sites would result in a fairly large frustration f . By con-
trast, the dilute system of panel (a) avoids all unfavor-
able interactions by forming a fiber, resulting in a lower
value of f . More generally, we speculate that an effec-
tive way for a dilute system to avoid unfavorable inter-
actions is to incorporate empty sites in its morphology.
The incentive to do so should be larger in interaction
maps that result in a large “dense frustration” fdense,
implying that this dense frustration could be correlated
with the final aggregate morphology.
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Figure 6. Asymmetric interactions frequently lead to
aggregates of reduced sizes or dimensionality. Each
pie-chart shows the statistics of aggregate categories formed
from random interaction maps as a function of affinity, and
anisotropy. The 9000 randomly drawn interaction maps are
binned according to the measured affinity, and anisotropy,
with precision of 1kBT . Each pie-chart summarizes the in-
formation of 50 to 292 interaction maps. Aggregate cate-
gories are determined by supervised machine learning. The
same graph with the data binned according to the affinity
and anisotropy of the distribution is shown in Fig. 23

To test this correlation and the idea that the forma-
tion of small, slender or porous aggregates leads to a
reduction in frustration, we compute fdense and fdilute
for each interaction map in our sample of 9000. The ex-
amples outlined in Fig. 8(a) validate our speculations:
the five interaction maps on the left display a high dense
frustration, which they relax in a dilute setting by tak-
ing advantage of empty sites. By contrast, the two right-
most particles display low levels of dense frustration.
When diluted, they form compact aggregates with an
internal organization resembling the dense systems. By
contrast with the first group of five, in these systems the
boundaries of the dilute aggregate are less energetically
favorable than the bulk, implying a dilute frustration
higher than its dense counterpart. These trends are
confirmed statistically in the histograms and averages
of Fig. 8(b) and (c). We thus conclude that most of our
systems are frustrated, and that a high dense frustra-
tion is associated with a non-compact dilute morphology
that enables a reduction of the frustration.

IV. THE ABILITY TO ASSEMBLE INTO
PERIODIC MOTIFS PREDICTS THE

AGGREGATE CATEGORY

While our findings on the role of frustration pro-
vide insights into the physics that underpins the self-
assembly of particles with complex interactions, the his-
tograms of Fig. 8(b) overlap too much for the number
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Figure 7. We quantify geometrical frustration as the
energy surplus associated with the geometric con-
straints. (a) Interaction map J leads to a fiber (same color
codes as Fig. 3). (b) When a single particle (here on the top
left) realizes the most favorable interactions with its neigh-
bors, it leads to an unfavorable interaction between these
neighbors (labelled “3” here). (c) Minimizing the energy
of the three particles together leads to the same fiber mo-
tif observed in panel (a). (d) In the simulation, we measure

the contact map ⟨N (s)⟩ that takes into account the geometric
constraints associated with such local particle arrangements.
(e) By contrast, in our constraint-free minimization we de-

termine the contact maps that minimizes the energy N (m)

without constraints of this type. We quantify frustration
as the relative energy difference between the protocols illus-
trated in these last two panels (f = 0.75 in that example).

f to serve as a reliable predictor of the resulting aggre-
gation category. To better understand the most crucial
aspects of the interaction map, here we again train neu-
ral networks to predict the outcome of self-assembly, but
this time while intentionally providing them only with
partial information.

From a formal point of view, our Monte Carlo simu-
lation outputs the aggregation category corresponding
to an interaction map from the specification of its 21
independent components. We first verify that a neu-
ral network can emulate this computation given a large
enough training set to learn the full high-dimensional
phase diagram. More specifically, we perform a closely
related test on our sample of 9000 by providing a neural
network with the interaction map, as well as the average
av(J) and standard deviation std(J) of the energies of
interaction map J . The quantities av(J) and std(J) are
closely related to µ and σ, with the difference that the
former relate to an individual J and the latter to the
underlying probability distribution [Eq. (1)]. As shown
in Fig. 9, the resulting prediction accuracy is close to
100%. Compared to this ideal case, a neural-network
prediction based on fewer than 23 scalar values – re-
ferred to as “features” in the following – should be less
accurate as it proceeds from a more limited amount of
information. To get a sense of the expected decrease in
accuracy upon a decrease in the number of features, we

train neural networks based on a restricted amount of
information by omitting to provide them with some of
the components of the interaction map. As shown in
Fig. 9, under this protocol the predictive power of the
neural networks decreases monotonically as the number
of features decreases. In the most extreme case, the ac-
curacy falls to less than 60%, when only the measured
av(J) and std(J) are provided.

While our wholesale masking of the interaction map
sets our expectation for the accuracy expected from a
given number of features, we reason that some better-
chosen descriptors could outperform this baseline. Here
we look for such descriptors as a means to identify the
aspects of the interaction maps most relevant to the
outcome of self-assembly. In a first test of this idea, we
ask whether the aggregate morphology could simply be
determined by the specification of which of its interac-
tions are attractive vs. repulsive, irrespective of their
intensity. Such an outcome would be contrary to our
previous discussions of the role of frustration in our sys-
tem, whereby a subtle balance between the magnitude
of several interactions determines which local structures
are actually chosen by the system. We see in Fig. 9 that
a neural network provided solely with av(J), std(J) and
the signs of the individual interactions (not their mag-
nitudes), performs almost as poorly as one that only
has access to av(J) and std(J). This finding thus fur-
ther strengthens our conclusion that frustration plays
an important role here.

In a second approach, we reason that some compo-
nents of the interaction map are more conducive than
others to the formation of aggregates of large sizes. In-
teractions that promote identical orientations between
neighboring particles may thus favor crystals, as in ex-
ample (2) of Fig. 2(c). By contrast, if only one of these
three interactions is favorable, fibers tend to form. We
refer these as “line interactions”, and attempt to pre-
dict the aggregation category from their three values
alongside av(J) and std(J). As shown in Fig. 9, this
procedure far outperforms the 5-features baseline. We
interpret this success by noting that line interactions
enable the formation of periodic aggregates, and that
an enhanced ability to form such aggregates in one or
two directions is a strong predictor of the formation of
fibers and crystals.

To further exploit this insight, we note that the spec-
ification of line interactions only captures the ability to
form periodic structures with a period equal to one while
many of our aggregates display higher-order periodic
structures. We design a more suitable predictor inspired
by example (4) of Fig. 2(c). In this example, a fiber
emerges from a combination of two interactions where
particles are anti-aligned, resulting in a periodicity of 2
lattice sites. This suggests that in this case, the nearest-
neighbor line interaction discussed above can usefully
be replaced by an effective second-nearest-neighbor in-
teraction mediated by an anti-aligned particle. As illus-
trated in Fig. 10(a), we analogously define effective nth-
neighbor interactions by filling the n−1 sites joining two
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Figure 8. Particles avoid frustration by self-assembling into non-compact aggregates. In a dense system, individual
particles have no choice but to interact with their neighbors, resulting in an overall higher frustration than in dilute systems.
(a) Example of dense and dilute equilibrium configurations and corresponding relative frustrations as defined in Eq. (2) for
seven representative interaction maps. The last two examples are exceptions to the average trend of higher dense frustration.
(b) Histogram of the probability density of relative frustration for each of our seven categories of aggregating (non-monomer)
systems. (c) Corresponding averages.

identically-oriented particles with particles in the most
energetically favorable orientations. Here we disregard
particles outside of the straight line joining the parti-
cles, and consider all three possible orientations of the
identically oriented particles. As shown in Fig. 10(b),
positioning the three nth neighbor interactions on our
triangular lattice mimics the configuration encountered
in our original definition of the line interactions, albeit
with a larger mesh size. We illustrate our procedure for
the interaction map of Fig. 10(c), for which all effective
interactions for n ranging from 1 to 5 are displayed in
Fig. 10(d). We find that the best periodic motif arises
for a value n = n∗, which in this case equals 2. This
indicates that the system’s best chance at forming a pe-
riodic aggregate is for a period 2. By further examining
the direction-specific period-2 energies e∗1, e∗2, e∗3 dis-
played as colors in Fig. 10(d), we find that only one of
them is very favorable. This suggests that fibers should
be most favorable among the period-2 structures, con-
sistent with the result of the Monte-Carlo simulation
of Fig. 10(c). The examples of Fig. 10(e) further indi-
cate that a larger number of favorable n = n∗ motifs is
associated with denser aggregates. This suggests that
the specification of the energy of these motifs could be
indicative of the final morphology of the aggregate.
To put this intuition on a more quantitative basis,

for each of our interaction maps we compute the vector
(av(J), std(J), e∗1, e

∗
2, e

∗
3, n

∗), or “propagability” of the

interaction map, and assess its power as a 6-features
predictor of the aggregate morphology (Appendix A 5).
We find that its 96% success rate far outperforms our
other attempts, which we all describe in Appendix B 5.
By and large, these alternative attempts are based on
averages of several interactions. They are thus presum-
ably less successful than the propagability at capturing
details of particles’ preference for certain local organi-
zational, as well as their ability to tile the plane, both
of which are tied to the presence of geometrical frustra-
tion. We thus conclude that the ability of the particles
to form a structure that can propagate in one of several
lattice directions determines the aggregate morphology.

DISCUSSION

The model introduced here reveals the effect of a type
of complexity that is largely disregarded in existing self-
assembly models, namely non-transitive, pair-specific,
highly asymmetric interactions. Despite the enormity of
the associated parameter space, we find that they pro-
duce only a few stereotypical morphologies reminiscent
of those encountered in protein aggregates. This sug-
gests that the frustrated self-assembly of complex par-
ticles may be dominated by a few universality classes,
whereby few of the details of the local interactions be-
tween particles are relevant to understanding the result-
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unknown

PROPAGABILITY

Figure 9. Propagability, a measure of the ability to
form periodic motifs, is a very successful predictor
of aggregate morphology. Purple squares: A neural net-
work can accurately predict the aggregation category when
provided with the full aggregation map (rightmost purple
square), although this ability rapidly degrades when mask-
ing some of the features of this map (grayed out in the inset).
Green gradient: Strategies that result in an accuracy above
the purple symbols outperform this crude baseline. This
category includes the specification of the line interactions
(green diamond symbol) and propagability (blue circle). By
contrast, the sole sign of each interaction energy is a very
poor predictor of the morphology (orange cross).

ing large-scale morphologies.

This interpretation is supported by our ability to pre-
dict these morphologies from our “propagability”, i.e., a
coarse-grained version of the interactions between neigh-
boring particles. While revealing of the mechanisms at
work within the examples presented here, this descrip-
tor leaves out several important features, including the
role of particles lying in the “holes” between the straight
gray lines of Fig. 10(b). It nevertheless indicates that a
more systematic renormalization group approach could
allow us to go beyond qualitative statements and quan-
titatively identify which features of the interaction map
are most relevant to the aggregates’ large-scale mor-
phology. Our lattice model offers an ideal setting for
such approaches. It is indeed amenable to decimation
techniques developed in the early days of the study of
critical phenomena [41], unlike existing models for self-
assembly in the presence of frustration, which typically
feature particles with continuous translational degrees
of freedom.

The universality classes discussed here could provide a
major step in unifying observations of common features
in many disparate models of frustrated self-assembly.
Frustration has indeed traditionally been attributed to
the presence of particles with ill-fitting shapes [42], or
to the presence of incompatible interactions. A simple
example of the latter is the simple case of the antiferro-
magnetic Ising model [43], and more recent studies have
also considered continuous order parameters [40, 44].
Such effects have traditionally been studied in dense me-
dia, where frustration may strongly influence the local

organization of the system, but tends to vanish upon re-
peated renormalization [39]. By contrast, in the context
of self-assembling dilute particles, frustration influences
the shape of the boundary of the aggregate, and may
thus remain relevant on large scales. This leads to fi-
brous objects and morphologies with internal holes in
a wide range of settings, ranging from particles with a
frustrated internal degree of freedom to colloidal self-
assembly on a curved surface [36, 45–49]. Qualitatively,
such morphologies are well explained by the frustration
avoidance mechanism discussed in the present work and
illustrated in Fig. 8. However, no common language
has yet emerged to quantitatively describe the associ-
ated structure selection mechanisms independent of the
details of each model.

Such a robust physical framework could help predict
the outcome of protein self-assembly. Indeed, determin-
ing protein-protein interfaces and oligomer shapes of un-
known proteins remains difficult for proteins for which
detailed structural information is not available in the
Protein Data Bank (PDB) [50]. So far, estimates of
the binding energies of protein contacts are primarily
performed by measuring how often these contacts are
observed in the PDB [51]. Our results, however, em-
phasize that pair interactions that are not observed are
not necessarily unfavorable. Instead, geometrical frus-
tration leads to a nontrivial relation between the inter-
action map and the contact map. Moreover, in living
cells transitions from one protein aggregate morphology
to another occur following changes related to individ-
ual binding sites (for example, through phosphorylation
or binding to a ligand [52, 53]), or to a global shift in
the binding (free) energies (e.g., through a change in
temperature [54]).

Those modifications of the binding energies and their
influence on the aggregate morphology are a typical ex-
ample of the type of complexity formalized for the first
time by our model. Additionally, three-dimensional ex-
tensions thereof would display an even larger level of
such complexity due to additional sources of frustration
due to twisting and chiral effects as well as the presence
of more numerous independent interactions, e.g., 84 for
cubic particles.

Self-assembly is a valuable tool to build complex ma-
terials on small scales, for instance using colloids, pro-
teins or DNA-based subunits whose interactions can be
tailored to a very large extent [55–57]. The diversity
of aggregate morphologies observed here could inspire
such designs, from self-limited micelles to fibers with
widths larger than the size of one particle. This mech-
anism of self-limitation for colloidal self-assembly has
not been previously reported [58], and could be used as
a design strategy for, e.g., DNA origami [59]. We also
observe porous materials, a category with useful storage
and mechanical properties [60]. We do not observe ag-
gregates of fractal dimensions [61] or quasi-crystals [62],
which is not an indication that such aggregates could
not be observed with particles of complex interactions –
rather, these morphologies are intrinsically repressed in
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Figure 10. We define an interaction map’s propagability as a measure of the energy of its best periodic motifs.
(a) We assess linear periodic motifs by enumerating the orientations of the gray particles and choosing the combination of
orientations with the lowest energy. (b) When put in the context of our triangular lattice, the three motifs of the previous
panel characterize all three main lattice directions. (c) An example interaction map. (d) All n ≤ 7 periodic motifs associated
with this interaction map, with the associated energies per particle indicated as colored squares. The period of the best
motif (n = n∗ = 2) is highlighted. In this example, only one of the three n = n∗ motifs is energetically favorable, leading to
a fiber morphology. (e) Other examples of n = n∗ motifs and associated energies.

lattice models. Overall, we suggest that self-assembly
based on a collection of many identical particles with
highly asymmetric interactions could provide a more ro-
bust alternative to traditional designs based on multiple
constituents, in which even very small non-specific in-
teractions can be very detrimental to the self-assembly
yield [63].
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Appendix A: Methods

1. Monte-Carlo simulation

We determine the equilibrium configuration of particles with a given interaction map with Monte-Carlo
Metropolis-Hastings simulated annealing coded in C++. Here, we explain the Monte-Carlo steps and anneal-
ing protocol. The justification for the parameter choices are given in Appendix B 2. Most of the methods described
in Appendix A and Appendix B were also described in [64].

A fixed number of particles is placed on a two-dimensional triangular lattice with periodic boundary conditions.
Throughout the study, we choose a lattice of Nsites = 30 × 30 lattice sites, and 100 particles (except in the
systems shown in Figs. 2, 3 and 7, where the system size is smaller to ensure better visualization). We explore the
configurations of the system by changing the particles’ orientations and positions. We index the equilibration steps
by an integer t. At each t, the configuration of the system is described by the positions and the orientations of all
the particles.We only change the configuration ofat most one particle per step t. The energy of the system reads

E(t) =
∑
a≤b

Nab(t)Jab (A1)

At each step, we perform an elementary Monte-Carlo move. We thus draw with a uniform probability which particle
will change configuration. With probability 1/2, the chosen particle changes orientation. The new orientation is

https://theses.hal.science/tel-04167087
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drawn uniformly among the orientations that are different from the current one. With probability 1/2, the particle
changes position on the lattice. The new position is drawn uniformly among the empty sites of the lattice. Therefore,
the particles do not only diffuse to neighboring sites but rather teleport to arbitrarily distant available sites, which
favors faster equilibration. At each step, we compute the new energy of the system E′ and compare it to the old
energy E. In practice, we only recompute the energy from the bonds of the moved particle(s) and its old and
new neighbors. The move is accepted according to a Metropolis criterion with temperature T (always accepted if
E′ < E, accepted with a probability p = exp[−(E′ − E)/(kBT )] if E

′ > E).
We minimize the free energy of each system using simulated annealing. We perform 100 equally spaced temper-

ature steps starting at kBT = maxab|Jab| and ending at kBT = 1. Within each temperature step we perform a
number of Monte-Carlo steps equal to 800 ×Nsites, where Nsites denotes number of sites in the system. After the
annealing, we perform 1000×Nsites Monte-Carlo steps at kBT = 1 while averaging Nab. The results presented here
are averages over five repeats of the whole annealing procedure for each interaction map.

2. Machine learning classification

To train the algorithm that recognizes the aggregation category, we first manually label 693 images of equilibration
results such as the ones shown in Fig. 4. We train a dense neural-network to classify 80% of the labelled data (the
training set) and we test its performance on the rest of the labelled data (the test set). We then use this neural-
network to classify the rest of the dataset that was not labelled manually. The result of the classification on all
the data is shown in Fig. 6. Here, we explain how the neural-network is built, trained, and show that it reliably
classifies our data.

Let us consider an individual interaction map, which we index by i in the following. We first run an equilibration
simulation for map i, and create an input vector Xi to describe the output according to the procedure of described in
Appendix A 2 a. The output vector of the classification algorithm is an eight-component vector Yi whose individual
components represent the probability of the aggregate belonging to each of our eight categories. For hand-labelled
aggregates, the true value Ytrue

i of this vector is known. For instance Ytrue
i = (0, 1, 0, 0, 0, 0, 0, 0) for the aggregate of

Fig. 2(c)(2) because the aggregate belongs to the second aggregation category (namely crystals). The training of the

algorithm consists in minimizing the distance betweenYtrue
i and the predictedYpred

i as described in Appendix A 2b.

a. Input vector

The input vector is composed of the interaction map (21 numbers), the density map, i.e. the proportion of
each types of interaction, included the empty-empty and empty full interactions (28 numbers), and of geometric
indicators: the averaged size, the averaged number of vacancies per particles in an aggregate, and the averaged
surface to volume ratio of each aggregate (3 numbers). The density map and the geometric indicators are averaged
over 5 different simulated annealing of the system. These numbers are usually referred to as features.

For each hand-labelled interaction map, we multiple input vectors with the same label to take into account the
symmetries of the system. Indeed, the interaction map and density map are defined up to the relabeling of the
angles ϕi of Fig. 2(a). This relabeling corresponds to a cyclic permutation of the lines and the columns in the
interaction map. Two interaction maps J and J ′ are thus physically equivalent if they verify

J ′ = P k · J · P−k with P =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

 and k ∈ J0, 6K (A2)

Similarly, two interaction matrices J and J ′ are equivalent up to a mirror transformation of the particle if they
verify

J ′ = M · J ·M−1 with M =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 (A3)
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For each interaction map, we enumerate the cyclic permutation and mirror transformation of the interaction map,
and add the 11 corresponding distinct input vectors to the dataset. As a consequence, the neural-network learns
that two systems are equivalent after this transformation, and the classification does not depend on the arbitrary
choice of the permutation of the interaction map. It also has the advantage of increasing the number of data by a
factor 12, without having to run more simulations or classify more images.

We label 82 systems as monomers, 67 as oligomers, 85 as micelles, 71 as crystallites, 59 as fibers, 107 as sponges,
87 as crystals, and 135 as liquids. We copy 10 of the fibers data a second time, because this category is less
represented than the other. The total number of input vector is therefore 693 + 10 = 703. Those examples are
spread among all values for affinity and asymmetry (µ and σ). For this dataset, we have the input vector X, and the
true label vector Ytrue which collects the values of all Ytrue

i . The final total input of the algorithm X is composed
of 703× 12 input vectors, each containing 21+28+3 = 52 features. We normalize each feature by its average value
over the whole dataset.

b. Neural-network

Here, we choose the structure of the neural-network and the learning parameters such that the accuracy of the
prediction on both the training and the test set are close to 100%. As is often the case in machine learning, these
choices are arbitrary and another neural-network architecture could give similar results [65].

To transform the input X into the predicted labels Ypred, we use a dense network of 5 layers implemented with
the python library keras. Each layer is respectively composed of 100, 200, 400, 100 and 30 neurons. At each layer,
we use the rectified linear unit function. The network is trained by minimizing the cross entropy loss function. The
optimizer is adam. We also implement an L1 and L2 regularization, with factors 10−4 and 10−5. We optimize the
loss function for 1000 iteration (epochs) on different batches of 128 data (minibatches). We measure a training
accuracy of 99.9% and a test accuracy of 99.3% on the labeled dataset.
With this neural-network, we then classify the rest of the dataset that was not labelled manually. We ensure that

the labelled and unlabeled data have comparable distribution by labelling a sufficient amount of data for all values
of the affinity and asymmetry, and in each aggregation category. We thus label between 11 and 21 aggregates out
of the 200 data for each value of the couple (µ, σ).

3. Frustration and naive minimization

As a baseline for the physics of aggregation in the absence of geometrical constraints, we determine the proportion
of each face pair in a system where their paring is completely unconstrained, save for the conservation of the number
of bonds and number of particles. The free-energy of such a system reads

F ({Nab}) =
∑
a≤b

NabJab − kBT
∑
a≤b

Nab

Nbonds

(
ln

Nab

Nbonds
− 1

)
, (A4)

where the indices a and b run between 0 and 6 and the faces labelled “0” refer to an empty site in the following.
We ensure the conservation of the number of bonds and the number of faces are ensured with 7 Lagrange multiplier
(λ and {λa}a∈J1,6K). We therefore solve the following set of equations numerically for kBT = 1.

N
(min)
ab = ∂

∂Nab

[
F ({Nab}) + λ

(∑
a≤b Nab −Nbonds

)
+
∑

a≥1 λa

(∑
b Nab +Naa −Nparticles

)]
∑

≤a≤b Nab = Nbonds∑
b Nab +Naa = Nparticles,

(A5)

We then measure the frustration as the positive energy difference between the minimal energy resulting determined
from the Boltzmann distribution, and the equilibrium energy determined in the numerical simulation.

∆Ef =
∑
a≤b

(N
(s)
ab −N

(m)
ab )Jab (A6)

This energy difference is due to the favored interactions that could not be realized in the numerical simulation,
because they lead to an extra interaction that is not accounted for in the energy minimization. We then compute
the relative energy difference, by dividing frustration by E, the energy of the system measured in the simulation.

f = ∆Ef/E (A7)
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4. Evaluating a measure of the interaction with machine learning

Here, describe our use of machine learning to predict the outcome of aggregation from partial information on an
interaction map, as in Fig. 9. As described in Appendix A2 b, we have at our disposal a list of labelled interaction
maps, each assigned to an aggregate category. We train a neural-network to predict the aggregate category from
partial information on the interaction map following the procedure described in Appendix A 2 a, with the exception
that we use only half of our sample of 9000 system for computational speed. We denote the vector containing the
partial information by X(partial). We then assess its accuracy, as reported on the vertical axis of Fig. 9. To ensure
that our result does no depend on our choice of training sample, we redistribute the data into the training and test
sets and repeat this process 20 times and report the average result. The specific subset of 4500 systems out of 9000
is redrawn randomly each time, but always includes the 693 manually labelled data, the other being labelled with
the method described in Appendix A2.

For each initial dataset X(partial), we keep the architecture of the neural-network unchanged (6 layers composed
of 100, 200, 500, 200, 100 and 30 neurons respectively) and use the same training procedure as in Section II. The
rest of the learning parameters, such as the regularization factors or the number of epochs, are identical to that of
the network described in Appendix A 2.

5. Measure of the propagability

Here, we describe our procedure to compute the propagability from the interaction map, by enumerating the
possible periodic lines of the particles and measuring their energy per particle. For a given initial orientation
φ0, and a given periodicity n, we enumerate all 6n−1 orientations {φk} of the particles such that a line is in the
configuration (φ0, φ1, ..φn−1, φ0), which we refer to as a periodic motif.

The effective coupling for a given initial orientation φ0 and a given periodicity n, which we denote by Jeff(n, φ0)
is the minimal possible energy for a periodic motif over our enumeration of its orientations.

Jeff(n, φ0) = min
φ1,...φn−1

Jφ0φ1 + Jφ1φ2 + ...+ Jφn−1φ0

n− 1
(A8)

From a given interaction map, the computation of the values of Jeff(n, φ0) is a straightforward operation on the
entries of the matrix. Because of the rotation invariance of the system, we only compute this value for φ0 = 0, π/3
and 2π/3. We also only compute this number for n ≤ 6, because since the particles only has six orientations, there
cannot be any most favorable one-dimensional periodic motif of more than 6 particles. Computing one value for
Jeff is at maximum an enumeration of 65 configurations, which is accessible numerically.

For a given periodicity n, the organization of the gray particles of Fig. 10(a) such that each of the energies
e1(n),e2(n) and e3(n) are minimum is then simply computed from the effective interactions of equation A8:

Jeff(n) =
(
Jeff(φ0 = 0, n), Jeff(φ0 = π/3, n), Jeff(φ0 = 2π/3, n)

)
(A9)

Here, we do not count the interactions with the particles that may or may not be present between the gray lines of
Fig. 10(b). The number of such particles for the largest motifs considered here is indeed well beyond our ability to
enumerate them.

We then choose the best periodicity n∗ to be the one where the minimum of the three line energies is the lowest
n∗ = argmin

n,i
[ei(n)] An alternative definition of the propagability where n∗ = argmin

n
[e1(n) + e2(n) + e3(n)] leads

to a poorer prediction accuracy. The propagability is thus defined as the list of six features, all computed from the
interaction map J : the three components of the optimal effective coupling vector Jeff(n∗) = [e1(n

∗), e2(n∗), e3(n∗)],
the optimal periodicity n∗, the particle affinity av(J) and asymmetry std(J). Because we evaluate together periodic
lines of identical length n, we authorize some of those lines to be of period n/2 or n/3, to match a longer and favored
periodic line. For instance, in Fig. 10e, the second motif of the crystallite is of period 1, but the motif of lowest
energy is the first line, of period 2. For this reason, we could consider motifs of length larger than 6, to allow for
commensurate motifs of period 4 and 5 for instance. Yet, we reason that we did not observe aggregate periodicity
larger than 6, and that this computation is not accessible numerically.
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Appendix B: Supplementary material

1. Choice of an interaction map with vanishing surface energy

In the interaction map introduced in Fig. 2, we only account for the interaction energy between the faces of two
particles. In principle, we could also define an interaction energy between a particle face and an empty site of the
lattice, or between two empty sites of the lattice. Here, we show that in a system with a fixed number of particles
these interactions can be set to any arbitrary value without loss of generality.

We refer to sites of the lattice where a particle is present as full, and those where there is no particle as empty.
While we label full-full interaction using the notation Jab as in the main text, we denote the energy of an empty-full
interaction by Ja0 and that of an empty-empty interaction by J00.
In the general case of non-zero Ja0 and J00, we generalize Eq. (A1) to write the total energy of the system as

E = J00N00 +

Nfaces∑
a=1

Ja0Na0 +

Nfaces∑
a=1

a∑
b=1

JabNab (B1)

Hexagonal particles give rise to Nfaces+1 = 7 conserved quantities. These quantities are the total number of bonds,
and the number of a-faces:

Nbonds = N00 +

Nfaces∑
a=1

Na0 +

Nfaces∑
a=1

a∑
b=1

Nab (B2)

Na = Na0 +
∑
b̸=a

Nab + 2Naa (B3)

and since each particle has one of each type of faces, we have

∀a ∈ J1, NfacesK Na = Nparticles (B4)

We may thus subtract a linear combination of Nbonds and Na from the system energy E without changing the
physics of the system. We specifically choose a new shifted energy

E′ = E − J00Nbonds −
Nfaces∑
a=1

(Ja0 − J00)Nparticles

=

Nfaces∑
a=1

a∑
b=1

(Jab − J00 − (Ja0 − J00)− (Jb0 − J00))Nab

=

Nfaces∑
a=1

a∑
b=1

(Jab + J00 − Ja0 − Jb0)Nab

=

Nfaces∑
a=1

a∑
b=1

J ′
abNab (B5)

which boils down to the definition of a new interaction map J ′
ab = Jab + J00 − Ja0 − Jb0 for which the energies of

the full-empty and empty-empty bonds is zero, as assumed throughout the main text.

2. Equilibration

To demonstrate that our simulations result in well-equilibrated systems, here we show that with our annealing
protocol the measured final composition of a system and aggregate morphology are independent of the number of
annealing steps, and particle density.

For the interaction maps shown in Fig. 4, we measure the energy per particle as a function of the number of
Monte-Carlo steps performed per temperature and per lattice site. The results are shown in Fig. 11, together
with images of an equilibrium configuration at different time steps. As expected, the energy per particle decreases
with the duration of the equilibration, up to a limit after which increasing the number of steps does not decrease
the energy. We choose the number of steps for the simulation to be such that the relative lowering of the energy
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Figure 11. Our final systems are well equilibrated. Beyond 800 steps per temperature and lattice sites, the energy
and the system configuration are unchanged by increasing the annealing time. Equilibrating curve and system snapshot at
different number of steps. The black horizontal line is a relative energy difference of 3% with the energy measured for the
maximal number of steps. The vertical scale is 3.4kT for all plots. For each system, the interaction maps are similar to that
of Fig. 4, and the values of affinity and asymmetry (µ, σ) are indicated in the top right of each energy profile. Error bars
indicate the standard error averaged over 10 simulations.

resulting from a doubling of the number of steps is smaller than 3%. We find that this result can be obtained by
performing 800 Monte-Carlo steps per temperature and per lattice site. This corresponds to the black dotted line
on the energy evolution on Fig. 11. The images on the figure confirm that the configuration of the system also does
not change by increasing the number of steps above 800 per temperature step per site.

We study the influence of the density of particles on the aggregate morphology in Fig. 12. We vary the size
of the system (Nsites = L × L), and keep the number of particles Nparticles = 100 constant. When the system
is of density one (L = 10), the energy per particle can be very different from the dilute systems, as discussed in
relation with Fig. 8 of the main text. As illustrated in Fig. 12 however, for smaller densities the energy per particle
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Figure 12. In dilute systems, the aggregate morphology is independent of the particle density. We vary the
size of the system (Nsites = L× L) while keeping the number of particles constant at 100. For each system, the interaction
maps are similar to that of Fig. 4, and the values of affinity and asymmetry (µ, σ) are indicated in the top right of each
energy profile. We show the energy per particles as a function of the lattice size. In most cases, the energy does not vary
with the system size. For the crystallites (the orange curves, when (µ, σ) = (−2, 15), (2, 11), (4, 7), the entropic contribution
is sufficiently important for the energy to increase with system size. In all cases, the morphology is unchanged by decreasing
the density. The black horizontal line is a relative energy difference of 5% with the minimal energy measured. The vertical
scale is 5kT for all plots. The number of Monte-Carlo steps of the annealing is always 800×Nsites.

does not vary with the system size in most cases when L increases. However, for the interaction maps leading to
crystallites (orange curves in Fig. 12), the energy per particles increases with the system density. This suggests
that the equilibrium configuration is driven by the entropic contribution of partially assembled aggregates. Indeed,
we verify in Fig. 11 that it does not depend on the annealing protocol. Despite these differences in the energy
dependence with the system size, the aggregate morphologies are not modified upon increasing the system density,
and the particles organization remains the same.
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3. Definition of the aggregate categories

Here, we show that the eight aggregate categories we introduced in the main text satisfactorily describes all the
morphologies resulting from the aggregation of particles with random interactions. We explain the criterion we use
for the manual labelling of the data, and show that a neural-network accurately learns to recognize these categories.
Finally, we show that the rare systems for which the classification is ambiguous correspond to aggregates where two
morphologies coexist in the same system.

In Figs. 13 to 20, we show 50 examples of manually labelled aggregates per category. The visual criteria we use
to distinguish between categories are the presence of interactions (monomers do not have interactions, as opposed
to all the other categories), the dimensionality (monomers, oligomers, micelles and crystallites are 0D, fibers are
1D, and sponge, crystals and liquids are 2D), the presence of orientational order (crystals and sponges display
orientational order, liquids do not, crystallites do and micelles do not), and the porosity (sponges are porous and
crystals are not).

Some examples are not trivial to classify. Here, we illustrate our criteria by discussing some borderline cases. We
label examples (16), (41) or (43) of Fig. 13 as monomers and not oligomers because despite the presence of a few
oligomers in the system, they do not always involve the same interactions, and a large fraction of the particles are
unbound. We label examples (16) and (19) of Fig. 15 as micelles and not oligomers because we see aggregates of
oligomer-like objects involving many structurally distinct oligomers. We label examples (20) and (25) of Fig. 15
as micelles and not fibers because despite the one dimensional organization of the particles, it is not persistent
enough to prevent those fibers to form loops. We label examples (28), (48) and (49) of Fig. 15 as micelles and not
crystallites, because the crystalline organization is not systematically observed among the aggregates. Conversely,
we label examples (19) or (38) of Fig. 16 as crystallites and not micelles. We label as crystals only the aggregates
that are monocrystals. Some aggregates classified as liquids are therefore partially crystalline. Some of them,
such as (15), (19) or (31) of Fig. 20 have some orientational order, but they are not completely periodic, have
defect lines, or have several competing crystalline organization. The liquid category is therefore heterogeneous and
contains aggregates with variable level of orientational order.

Fig. 5 presents evidence that the neural-network learns our eight categories well. Specifically, it shows that for
each system, the neural-network-computed probability of the most likely category is close to unity. In Fig. 21 we
additionally show that there are very few misclassifications, both on the training and the test set, emphasizing that
the characteristics used in our manual labeling are well learned by the neural-network.

In Fig. 22, we also show some of the few examples for which the neural-network categorization is ambiguous,
i.e., for which the prediction score defined in the main text is not close to unity. It concerns aggregates that have
properties associated with two categories. Example (5) is a sponge because most of the particles crystallize around
vacancies, yet, a small fraction of the aggregate follows a different organization, making it likely to be a liquid.
Example (13) is a crystallite, but a few particles do not follow the main orientational order, making it akin to
a micelle. Similarly, example (19) is a micelle, despite some particles following an orientational order similar to
crystallite aggregates. Example (21) and (24) are a mixture of fibers and dimers. Those examples of misclassification
indicate that there are no entirely new aggregates morphologies that do not enter any of our eight categories.
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Figure 13. We label as monomers systems of non-interacting particles.
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Figure 14. We label as oligomers systems of non-interacting identical aggregates.
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Figure 15. We label as micelles aggregates of finite size that do not have orientational order across the whole aggregate.
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Figure 16. We label as crystallites aggregates of finite size that do have orientational order across the whole aggregate.
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Figure 17. We label one-dimensional aggregates as fibers.
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Figure 18. We label as sponges aggregates that contain all or almost all particles in the simulation, display orientational
order and are porous.
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Figure 19. We label as sponges aggregates that contain all or almost all particles in the simulation, display orientational
order and are not porous

.
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Figure 20. We label as liquids the dense aggregates that contain all or almost all particles in the simulation but do not
display aggregate-wide orientational order

.
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Figure 21. The neural-network correctly classifies the aggregates into our eight categories. We show the confusion
matrix Cij (number of systems classified into category j by the neural-network while hand-labelled as belonging to category
i) for the training set (a) and the test set (b). The entries of the two matrices sum to 703 × 12, the number of labelled
systems.

4. Phase diagram

Fig. 6 shows data binned according to the measured average and standard deviation of each interaction map.
In Fig. 23 we show the same graph with the data binned according to the affinity µ and anisotropy σ of the
probability distribution of Eq. (1) used to generate the interaction map. Both phase diagrams have the same
tendencies: Interaction maps with small asymmetries and large affinities mostly form oligomer and monomers,
those with small asymmetries and small affinities form two-dimensional aggregates. Finally, interaction maps with
large asymmetries and large affinities form diverse aggregate morphologies. This suggests that our phase diagram
is robust to details in the binning procedure of its coordinates.

5. Finding the best predictor of the aggregation category

Fig. 9 shows the learning accuracy of a few descriptors, that suggest that the propagability is an excellent
descriptor of the aggregation category despite its relatively small size (it comprises 6 features). We have also
considered many other, less effective descriptors, which we detail here. Each descriptor contains the average and
standard deviation of the contact map in addition to the features discussed below.

Our first alternative descriptor is based on a similar idea as that depicted by the purple squares of Fig. 9. These
symbols correspond to descriptors comprised of a partially masked interaction map. While in that example we
masked the rightmost columns of the matrix representation of the interaction map, i.e., all interactions corresponding
pertaining to a subset of the faces of the particle, we may choose to mask the interactions corresponding to a
specific angle of interaction. This idea and the corresponding masked matrix elements are illustrated in Fig. 24.
The resulting prediction accuracies are illustrated by dark green diamonds in Fig. 25. Overall, this methodology
outperforms the masking baseline of the main text, and combinations including the line interactions are the most
effective among the descriptors of this class.
Instead of simply masking some of the information contained in the interaction map, we also assess descriptors

computed from its full specification, similar to propagability. We first use the six values of the averaged face
interaction, i.e., 1

6

∑
b Jab for a ∈ J1, 6K. The resulting accuracy is indicated by the red downward facing triangle

in Fig. 9, and falls almost exactly on the purple baseline. We next use the four average of the “angle interaction”
categories defined in Fig. 24, which performs almost as well as the propagability (light green triangle in Fig. 9).
In the main text, we show that knowing the sign of the interaction is not sufficient to predict the aggregate

morphologies. This implies that their strengths are crucial for this purpose. Conversely, here we ask whether
knowing only the unordered list of interaction strengths enables good predictive power. We thus randomly shuffle
the entries of each interaction map, leading to the orange star in Fig. 25. This predictor performs about as badly
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Figure 22. Aggregates that have an ambiguous classification are in between two categories. We show an image
of the equilibrium configuration, the interaction map on the bottom left, and the probability vector outputted by the neural-
network on top. The limits of the plots are between 0 and 1, the categories are ordered as in the rest of the paper, and the
colors are as in Fig. 6
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Figure 23. The phase diagram of Fig. 6 is not substantially modified when plotted as a function of the value
of affinity and anisotropy of the distribution used to generate the interaction maps.
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Figure 24. The angle of an interaction characterize the typical motifs it leads to. Depending on the angle of two
neighboring particle orientations, the corresponding interaction leads to aggregate lines, trimer, cycle, or dimers. This angle
corresponds to entries of the interaction map that are in the same diagonal (colored in gray).

as the signs-only predictor, highlighting the importance of the particles’ geometry.
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Figure 25. The propagability is the best predictor with small number of features. For each test (described in the
text), we show the accuracy of the prediction on the test set as a function of the number of features. We show the measured
standard deviation for each descriptor. The letters next to the green symbols refer to the type of interactions that are not
masked in the nomenclature of Fig. 24 (“L” = Line, etc.)


	 How do particles with complex interactions self-assemble? 
	Abstract
	Arbitrary interactions yields diverse aggregates morphologies
	Aggregate morphologies fall within a few stereotypical categories
	Particles form slender, small or porous aggregates to avoid geometrical frustration
	The ability to assemble into periodic motifs predicts the aggregate category
	Discussion
	Acknowledgments
	References
	Methods
	Monte-Carlo simulation
	Machine learning classification
	Input vector
	Neural-network

	Frustration and naive minimization
	Evaluating a measure of the interaction with machine learning
	Measure of the propagability

	Supplementary material
	Choice of an interaction map with vanishing surface energy
	Equilibration
	Definition of the aggregate categories
	Phase diagram
	Finding the best predictor of the aggregation category



