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Hydrogels connected by multivalent reversible crosslinkers are a versatile design platform for bio-
compatible viscoelastic materials. Their linear response to a step strain displays a fast, exponential
relaxation when using low valence crosslinkers, while larger supramolecular crosslinkers bring about
much slower dynamics involving a wide distribution of time scales whose physical origin is still de-
bated. Here, we are proposing a model where the gels’ relaxation originate from elementary events in
which the bonds connecting two neighboring crosslinkers all disconnect. Larger crosslinkers allow for
a greater average number of bonds connecting them, but also generate more heterogeneity. We char-
acterize the resulting distribution of relaxation time scales analytically, and accurately reproduce
rheological measurement on metal-coordinate hydrogels with a variety of crosslinker sizes including
ions, metal-organic cages, and nanoparticles. Our approach is simple enough to be extended to
any crosslinker size, and could thus be harnessed for the rational design of complex viscoelastic
materials.

Soft hydrogels are ubiquitous in biology, and dictate
the mechanics of cells and tissues [1]. Due to their
biocompatibility, synthetic hydrogels are prime candi-
dates to serve as robust soft tissue implants, although
a fine control of their viscoelastic properties is crucial
for their success in this role [2, 3]. In addition to stan-
dard approaches based on polymer rigidity and concen-
tration [4, 5], a new design strategy based on nanocom-
posite hydrogels has recently emerged [6]. In these ma-
terials, large crosslinkers such as clay [7], latex beads [8],
or metal-coordinate nanoparticles [9] are embedded in a
standard polymer matrix to make it stronger [10, 11].
Using transient crosslinkers combines these benefits with
a viscoelastic relaxation over long time scales [12] as the
crosslinkers unbind, relax and rebind to the polymers.

The viscoelastic response of nanocomposite hydro-
gels depends on the size of their crosslinkers. Metal-
coordinate gels crosslinked by single ions thus display
a single-exponential, Maxwell-like linear viscoelastic re-
sponse to a step strain [13]. Multiple types of ions can
then be combined in a single material to achieve com-
plex relaxational dynamics over up to a few tens of sec-
onds [14]. To achieve longer relaxation times, larger
crosslinkers allowing dozens of polymers to bind are typ-
ically needed, and bring about a more solid-like behav-
ior [15]. This in turns brings about a more complex re-
laxational dynamics. The resulting stress response to a
step strain is often fairly well described by a stretched
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exponential:

σ(t) ∝ exp [−(t/τ)α] , (1)

where smaller values of the stretching exponent α ∈
]0; 1[ denote broader distributions of relaxation time
scales [16]. This phenomenological law does not however
have an obvious physical interpretation, and the origin
of the nontrivial dependence of α and τ on temperature
and the crosslinker size remains unclear. A similarly phe-
nomenological power law (σ ∝ t−β) fit is often applied to
the rheology of other soft materials [17–19].

Here we aim to elucidate the response and enable the

FIG. 1. High-valence crosslinkers yield a slow, potentially
complex unbinding dynamics (a) Hydrogels held together by
small crosslinkers relax over the time scale associated with
the unbinding of a single polymer strand. (b) By contrast,
relaxation events in the presence of high-valence crosslinkers
require the simultaneous unbinding of many polymer stands.
The associated time scale is long and highly variable depend-
ing on the number of strands involved in the “superbond”
(grey shade).
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rational design of soft materials with crosslinkers that
display a high valence. We use the term “valence” to des-
ignate the number of polymer strands that a crosslinker
can bind, a property sometimes also refered to as their
“functionality”. We develop a physical model of their
viscoelastic relaxation. While existing microscopic ratio-
nalizations of stretched exponential relaxation are often
based on collective rearrangements in glass-like, dense
assemblies of hard particles [20], nonlinear elastic re-
sponse regimes [21] or the distribution of the sizes of
the material’s constitutive units [22], none of these is
straightforwardly applicable here. Instead, we propose
that the elementary relaxation events in viscoelastic gels
with high-valence crosslinkers resemble those at play in
the presence of low-valence ions, where stress is released
by the severing of the physical connection between two
crosslinkers (Fig. 1). In the case of high-valence crosslink-
ers, such connections–hereafter termed “superbonds”–
are comprised of several polymer strands. We find that
the breaking time of a superbond strongly depends on
the number of strands involved, consistent with previous
observations [23]. As a result of this dependence, small
spatial heterogeneities in the polymer concentration may
result in widely different relaxation times from one super-
bond to the next. This exponential amplification of small
structural differences is reminiscent of models previously
used to describe the relaxation of soft glasses [24, 25].
In contrast with these previous studies, our approach ex-
plicitly models their microscopic basis and allows us to
successfully account for the influence of temperature and
crosslinker valence on the macroscopic stress relaxation
observed in the resulting gel.

We model the attachment and detachment of a single
polymer strand from a pair of crosslinkers as shown in
Fig. 2(a). The energy barrier ∆E to disconnect the poly-
mer from a crosslinker and go into the transition state is
much larger than the thermal energy kBT = β−1, im-
plying that the transition state is short-lived. Assuming
a completely flexible polymer strand, the attached and
detached state on either side of this transition have the
same energy (equal to −∆E), but their entropy may dif-
fer by an amount ∆S. The overall rate ω+ to go from
the detached to the attached state (ω− for the reverse)
thus reads

ω+ =
1

τ0
e−β∆E ω− =

1

τ0
e−β∆E+∆S , (2)

where any difference in entropy between the detached and
transition state is hidden in the characteristic time scale
τ0 [26]. At equilibrium, we denote the probability for a
single polymer strand to be attached as pon = 1− poff =
1/(1 + e∆S).

We now consider the dynamics of a superbond involv-
ing N polymer strands and assume that each strand at-
taches and detaches independently from the others. As
a result the superbond undergoes the Markov process il-

(b)

FIG. 2. We model superbond breaking as the disconnection
of many independent polymer strands. (a) Disconnecting a
single polymer strand requires going through a high-energy,
short-lived transition state (larger arrows indicate faster tran-
sitions). The detached and attached states both have two
polymer-crosslinker bonds, and therefore have the same en-
ergy. (b) Individual strands in a superbond attach and detach
independently, resulting in a one-dimensional random walk in
the number n of attached strands [Eq. (3)]. Detached strands
are not drawn here.

lustrated in Fig. 2(b), and the probability P (n, t) for n
strands to connect the two crosslinkers at time t satisfies
the master equation

∂tPn(t) =ω+(N − n+ 1)Pn−1(t) + ω−(n+ 1)Pn+1(t)

− [ω+(N − n) + ω−n]Pn(t), (3)

which ensures that the number of bound polymers can
never be greater than N .

To determine the rate at which a superbond breaks,
we set an absorbing boundary condition P0(t) = 0 and

define its survival probability as S(t) =
∑N
n=1 Pn(t). In

the limit N � 1 where a large number of strands are
involved in the superbond, the detachment of the two
beads is analogous to a Kramers escape problem. The
average detachment time reads [27]

τN ∼
N→∞

τ0e
β∆E

NpNoff

(4)

and the survival probability decays as a single exponen-
tial S(t) = exp(−t/τN ) [28, 29]. The breaking of the
superbond can thus be assimilated to a Poisson process
with rate 1/τN regardless of the initial condition Pn(0).

Equation (4) implies a strong, exponential dependence
of the average superbond breaking rate on the number
N of strands, implying that any polydispersity in this
number may result in a wide distribution of time scales.
Two factors influence the distribution of N . First, its
value is constrained by the available space at the surface
of each crosslinker, which we model by setting an upper
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FIG. 3. Polydisperse, high-valence superbonds initially dis-
play a non-exponential mechanical relaxation, then cross over
to an exponential regime when only the saturated superbonds
remain. Curves plotted from Eq. (6) with poff = 0.2, N̄ = 10
and different values of Nsat as indicated on each curve.

bound Nsat on the number of polymer strands (attached
and detached) participating in any superbond. Second,
depending on the local density of polymer in the vicinity
of the superbond, the actual number of strands present
may be lower than Nsat. Assuming that polymer strands
are independently distributed throughout the system, the
distribution of local strand concentrations within a small
volume surrounding a superbond should be described by
a Poisson distribution. We thus assume that N is also
described by a Poisson distribution up to its saturation
at Nsat:

p(N) =

{
N̄Ne−N̄

N ! for N < Nsat∑+∞
K=Nsat

N̄Ke−N̄

K! for N = Nsat

, (5)

where N̄ would be the average number of strands in a
superbond in the absence of saturation.

In response to a step strain, we assume that each su-
perbond is stretched by an equal amount, and resists the
step strain with an equal force before breaking. Super-
bonds may subsequently reform, but newly formed bonds
are not preferentially stretched in the direction of the step
strain and therefore do not contribute to the macroscopic
stress on average. Denoting by t = 0 the time at which
the step strain is applied and by σ(t) the resulting time-
dependent shear stress, the progressive breaking of the
initial superbonds results in the following stress response
function:

σ(t)

σ(t = 0)
=

Nsat∑

N=1

p(N)

1− p(0)
e−t/τN . (6)

While the breaking times τN are unaffected by the ap-
plied stress in the linear response regime, nonlinearities
can easily be included in our formalism by making ∆S
stress-dependent and thus favor strand detachment. The

FIG. 4. Relationship between the stretched exponent α quan-
tifying the non-exponential character of the relaxation and
the microscopic parameter Nsat/N̄ . Here poff = 0.2. A low
Nsat/N̄ gives an exponential relaxation (α ' 1), while a larger
Nsat/N̄ leads to a more complex behavior. While α appears
to converge to a finite value for large Nsat/N̄ for the largest
values of N̄ , this behavior is contingent on our choice of fit-
ting interval. This issue does not affect the rest of the curves.
Large stars correspond to the curves represented in Fig. 3. In-
set: illustration of the quality of the fits between the heuristic
stretched exponential [Eq. (1)] and our prediction [Eq. (6)].

relaxation described in Eq. (6) occurs in two stages. At
long times t� τNsat

, few short-lived superbonds remain.
Saturated superbonds (N = Nsat) dominate the response
and Eq. (6) is dominated by the last term of its sum. As
a result the stress relaxes exponentially over time, as seen
from the linearity of the curves of Fig. 3 for large values
of t. Systems with smaller values of Nsat manifest this
regime at earlier times; in the most extreme case, the
relaxation of a system where superbonds involve at most
a single polymer strand (Nsat = 1) is fully exponential
and extremely fast as compared to systems with higher
Nsat. Over short times (t � τNsat), stress relaxation in-
volves multiple time scales. This non-exponential regime
is apparent on the left of Fig. 3.

While Eq. (6) is not identical to the stretched expo-
nential of Eq. (1), the inset of Fig. 4 shows that they
are remarkably close in practice. We thus relate the
stretched exponent α to the saturation number Nsat by
fitting the stretched exponential to our predicted stress
response function over the time interval required to re-
lax 90% of the initial stress (Fig. 4). The fits are very
close matches, and consistently give correlation factors
r2 > 0.98 (see detailed plots in Ref. [29]). If Nsat . 0.5N̄
then α ' 1, indicating a nearly-exponential relaxation.
Indeed, in that case superbond saturation occurs well be-
fore the peak of the Poisson distribution of N . Physically,
this implies that the local polymer concentration sur-
rounding most superbonds is sufficient to saturate them.
As almost all superbonds are saturated, they decay over
the same time scale τNsat

. As a result, the material as



4

FIG. 5. Stress relaxation function for three experimental systems with increasing crosslinker valencies. Here we use a log-lin
scale (unlike in Fig. 3) to facilitate the visualization a large range of time scales. Alternate representations are shown in Ref. [29].
Symbols are experimental datapoints, and the lines are the associated fitting curves. Insets: time-temperature collapsed data
obtained by a rescaling t→ teβ∆E .

a whole displays an exponential relaxation. For larger
values of Nsat, the Poisson distribution is less affected
by the saturation and the dynamics is set by the succes-
sive decay of superbonds involving an increasing number
of strands, implying lower values of α. The larger the
value of N̄ , the sharper the crossover between these two
regimes.

To validate our analysis of the impact of crosslinker
valence on hydrogel relaxation, we compare Eq. (6) to
experimental measurements. We perform step-strain ex-
periments on three gels all involving the same type of
polyethyleneglycol-based polymer stands terminated by
transient ligands, but whose crosslinkers cover a wide
range of valencies (Fig. 5) [15]. The first system has
nitrocatechol ligands crosslinked by single Fe3+ ions,
with an estimated valence of 3. In the second sys-
tem, pyridine ligands bind together through Pd2+ ions
to self-assemble into nanocages that crosslink up to 14
strands [30]. The third and final system has nitrocatechol
ligands crosslinked by iron nanoparticles with a mean di-
ameter of 7 nm, implying a surface area that allows the
simultaneously binding of ' 80 ligands. To estimate the
value of Nsat associated with each system from these va-
lencies, we reason that each crosslinker shares its strands
between 6 nearest neighbors as in a cubic lattice, i.e.,
Nsat = valence/6 (Table I).

In our model, the detachment of a single polymer
strand proceeds independent of its environment, imply-
ing the existence of a single energy scale ∆E. As a re-
sult, all time scales involved in the relaxation are pro-
portional to exp(−β∆E). We confirm this prediction
through a time-temperature collapse (Fig. 5, insets; de-
tails in Ref. [29]), and indicate the corresponding value of
∆E for each system in Table I. The energy scales associ-

ated with our three systems are of the same order despite
some chemical differences (including distinct ligands in
nanocages, lower pH and different state of oxydation of
the nanoparticles compared to the ions). These values
are moreover in order-of-magnitude agreement with the
∆E = 36kBT Arrhenius energy measured by stopped
flow for the unbinding of a single nitrocatechol from a
nanoparticle-like surface [15].

To compare the temperature-collapsed curves to our
prediction of Eq. (6), we round our Nsat estimates to in-
teger values and fit the parameters poff, τ0 and N̄ across
multiple temperatures. The resulting fits (Fig. 5) show
a good agreement between the theory and experiments
across up to 4 orders of magnitude in time scales. The
fitted values of poff and the single strand unbinding time
τ1 are consistent across all three system, consistent with
their chemically similar yet not identical binding mech-

crosslinker Fe3+ nanocages nanoparticles

estimated valence 3 14 80

estimated Nsat 0.5 2.33 13.33

rounded Nsat 1 3 13

∆E (units of kBT ) 28 24 24

poff 0.05 0.03 0.31

τ1 at T = 300 K (s) 0.05 2.4 0.14

N̄ 1 4.1 10.4

TABLE I. Estimated and fitted parameters involved in the
comparison between experiment and theory in Fig. 5. The
energies are given in units of kBT for T = 300 K. Instead of
presenting the parameter τ0, we present the more easily in-
terpreted unbinding time of a single polymer strand at 300K,
namely τ1 = τ0e

β300∆E .
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anisms (Table I). These values are moreover consistent
with previous measurements suggesting τ1 ≈ 1 s [15]. Fi-
nally, the values of N̄ cover the range of scenarios dis-
cussed above: exponential relaxation (N̄ = Nsat = 1 for
Fe3+), a complex relaxation soon followed by an expo-
nential phase (N̄ ' Nsat > 1 for nanocages), and an
extended complex relaxation (N̄ < Nsat for nanoparti-
cles).

Our model bears some similarity with standard ran-
dom energy trap models [31]. There, a long-tailed re-
laxation emerges from a short-tailed distribution of trap
depths due to the exponential dependence of the relax-
ation times on the trap depths. Similarly, here a non-
exponential relaxation emerges from a short-tailed dis-
tribution of superbond sizes N [Eq. (5)] thanks to the
exponential dependence of τN on N [Eq. (4)]. In con-
trast with trap models however, our model does not pre-
dict a glass transition upon a lowering of temperature.
It instead displays a simple Arrhenius time-temperature
relation, consistent with the experimental collapses in
the insets of Fig. (5). A crucial additional benefit of
our approach is the direct connection between the pre-
dicted relaxation and experimentally accessible parame-
ters such as the polymer concentration (through N̄) or
the nanoparticle area (through Nsat). Our model can also
account for the power-law relaxation observed in many
rheological system [17–19] provided Eq. (5) is replaced
by p(N) ∝ exp(−N/N̄). This yields [29]

σ(t)

σ(0)
∝ t1/N̄ ln(poff), (7)

up to logarithmic corrections, which explicitly links the
exponent of the power law to the parameters of the mi-
croscopic model. As the distribution of N is borne out
of the heterogeneity of the system, our model suggests a
possible control of the system’s rheology through p(N).
This distribution could in turn be modulated through
the spatial distribution of the polymer strands and the
polydispersity of the crosslinkers. Our model can further
be used to predict the frequency dependence of the stor-
age and loss moduli in a small oscillatory strain experi-
ment, and again predicts power law regimes when p(N)
is exponential [29]. It can also easily be extended into
the nonlinear response regime by introducing a stress-
dependence of the strand attachment probability poff.

Our model reproduces several qualitative character-
istics of the rheology of multivalent hydrogels, such as
the strong influence of the crosslinker valence, Arrhenius
temperature dependence and the transition between a
nonexponential and an exponential regime at long times.
Due to its simple, widely applicable microscopic assump-
tions we believe that it could help shed light on a wide
range of multivalent systems. Beyond composite gels, it
could thus apply to RNA-protein biocondensates where
multivalent interactions between proteins are mediated
by RNA strands [32], as well as cytoskeletal systems

where filaments linked to many other filaments display
a slow relaxation reminiscent of that of our multivalent
crosslinkers [33].
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Nanofibrillated cellulose composite hydrogel for the re-
placement of the nucleus pulposus. Acta biomaterialia,
7(9):3412–3421, 2011.

[3] Ovijit Chaudhuri, Luo Gu, Max Darnell, Darinka
Klumpers, Sidi A Bencherif, James C Weaver, Nathaniel
Huebsch, and David J Mooney. Substrate stress relax-
ation regulates cell spreading. Nature communications,
6(1):1–7, 2015.

[4] Davoud Mozhdehi, James A Neal, Scott C Grindy,
Yves Cordeau, Sergio Ayala, Niels Holten-Andersen, and
Zhibin Guan. Tuning dynamic mechanical response in
metallopolymer networks through simultaneous control
of structural and temporal properties of the networks.
Macromolecules, 49(17):6310–6321, 2016.

[5] Michael P Howard, Zachary M Sherman, Adithya N
Sreenivasan, Stephanie A Valenzuela, Eric V Anslyn,
Delia J Milliron, and Thomas M Truskett. Effects
of linker flexibility on phase behavior and structure of
linked colloidal gels. The Journal of Chemical Physics,
154(7):074901, 2021.

[6] Arti Vashist, Ajeet Kaushik, Anujit Ghosal, Jyoti Bala,
Roozbeh Nikkhah-Moshaie, Waseem A Wani, Pandiaraj
Manickam, and Madhavan Nair. Nanocomposite hydro-
gels: advances in nanofillers used for nanomedicine. Gels,
4(3):75, 2018.

[7] Qigang Wang, Justin L Mynar, Masaru Yoshida, Eunji
Lee, Myongsoo Lee, Kou Okuro, Kazushi Kinbara, and
Takuzo Aida. High-water-content mouldable hydrogels
by mixing clay and a dendritic molecular binder. Nature,
463(7279):339–343, 2010.

[8] Tirtha Chatterjee, Alan I. Nakatani, and Antony K. Van
Dyk. Shear dependent interactions in hydrophobically
modified ethylene oxide urethane (heur) based rheology
modifier latex suspensions: Part 1. molecular microstruc-
ture. Macromolecules, 2014.

[9] Niels Holten-Andersen, Matthew J Harrington, Henrik
Birkedal, Bruce P Lee, Phillip B Messersmith, Ka Yee C
Lee, and J Herbert Waite. ph-induced metal-ligand cross-
links inspired by mussel yield self-healing polymer net-
works with near-covalent elastic moduli. Proceedings
of the National Academy of Sciences, 108(7):2651–2655,
2011.

[10] Shengtong Sun, Li-Bo Mao, Zhouyue Lei, Shu-Hong Yu,
and Helmut Cölfen. Hydrogels from amorphous calcium
carbonate and polyacrylic acid: bio-inspired materials
for “mineral plastics”. Angewandte Chemie International
Edition, 55(39):11765–11769, 2016.

[11] Jun Fu. Strong and tough hydrogels crosslinked by multi-
functional polymer colloids. Journal of Polymer Science



6

Part B: Polymer Physics, 56(19):1336–1350, 2018.
[12] M. N. Dominguez et. al. Assembly of linked nanocrystal

colloids by reversible covalent bonds. Chem Mater, 2020.
[13] German Alberto Parada and Xuanhe Zhao. Ideal re-

versible polymer networks. Soft Matter, 14(25):5186–
5196, 2018.

[14] Scott C Grindy, Robert Learsch, Davoud Mozhdehi,
Jing Cheng, Devin G Barrett, Zhibin Guan, Phillip B
Messersmith, and Niels Holten-Andersen. Control of
hierarchical polymer mechanics with bioinspired metal-
coordination dynamics. Nature materials, 14(12):1210–
1216, 2015.

[15] Jake Song, Qiaochu Li, Hugo Le Roy, Aleksandr V.
Zhukhovitskiy, Jeremiah A. Johnson, Martin Lenz,
Gareth McKinley, and Niels Holten-Andersen. Engineer-
ing broad stress relaxation curves in associative polymer
gels via multi-functional cross-linkers. PrePrint, 2021.

[16] Jean-Philippe Bouchaud. Anomalous relaxation in com-
plex systems: from stretched to compressed exponentials.
Anomalous Transport, pages 327–345, 2008.

[17] GW Scott Blair and Jonathan Burnett. On the creep, re-
covery, relaxation and elastic” memory” of some renneted
milk gels. British Journal of Applied Physics, 10(1):15,
1959.

[18] Bavand Keshavarz, Thibaut Divoux, Sébastien Man-
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I. DISTRIBUTION OF SUPERBOND BREAKING TIME AND DERIVATION OF τN

Here we show that the survival probability for the detachment of a superbond (illustrated in main text Fig. 2)
containing many polymer strands (N → ∞) asymptotically goes to S(t) = e−t/τN , where τN is given by Eq. (4) of
the main text. We first consider a general one-step process and derive the basic recursion equation used throughout
the proof in Sec. I.1. We solve the recursion in Sec. I.2 and express the generating function of S(t) as a double sum.
In Sec. I.3, we apply the resulting formula to our particular problem and take the continuum limit of the second
sum. Finally, we compute both sums in the N →∞ limit in Sec. I.4. Our derivation is adapted from the calculation
presented in the appendix of Ref. [1].

I.1. Backward Kolmogorov equation for the generating function of S

We consider a one-step process, i.e., a stochastic process consisting of transitions between discrete states on a line,
with transition rates rn and gn illustrated in Fig. S1(a). We denote the probability for the particle to be in state k
at time t after starting in state n at time 0 by P (k, t|n). We assume an absorbing boundary condition in 0 and a
reflecting boundary condition in N , i.e.,

∀n ∈ [1..N ] P (0, t|n) = 0, rN = 0. (S1)

The backward Kolmogorov equation for our process reads [2]

dP

dt
(k, t|n) = gn[P (k, t|n+ 1)− P (k, t|n)]− rn[P (k, t|n)− P (k, t|n− 1)]. (S2)

We define the survival probability and its generating function (Laplace transform), respectively as

Sn(t) =
N∑

k=1

P (k, t|n), hn(α) =

∫ +∞

0

Sn(t)e−αt dt. (S3)

Inserting these definitions into Eq. (S2) yields

αhn(α)− 1 = gn[hn+1(α)− hn(α)]− rn[hn(α)− hn−1(α)], (S4)

which we endeavor to solve for hn(α) in the following.
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FIG. S1. Superbond detachment as a Kramers-like barrier-crossing problem. (a) Definition of the rates of the one-step process.
(b) Profile of the pseudo-free energy defined in Eq. (S13). Superbond detachment requires the system to fluctuate out of the
free energy well to the x = 0 absorbing state, with 1/N playing the role of a temperature.

I.2. Sum equation for the generating function

We define a rescaled current between sites n− 1 and n

∆n =

{
rn

(∏N−1
i=n

ri+1

gi

)
[hn − hn−1] for n < N

rN [hN − hN−1] for n = N
. (S5)

This allows us to turn the two-step recursion of Eq. (S4) into one with only one step:

∆n =

{
∆n+1 +

(∏N−1
i=n

ri+1

gi

)
[1− αhn] for n < N

1− αhN for n = N
, (S6)

which can easily be summed as

∆n =



N−1∑

j=n

(
N−1∏

i=n

ri+1

gi

)
(1− αhj)


+ 1− αhN . (S7)

We now invert Eq. (S5) and use Eq. (S7) to express the finite difference (hn − hn−1). We further use the property
that hm = h0 +

∑m
n=1(hn − hn−1) and recognize that h0 = 0 due to Eq. (S1) to obtain

hm =
m∑

n=1

1

rN

(
N−1∏

i=n

gi
ri+1

)




N−1∑

j=n

(
N−1∏

i=n

ri+1

gi

)
(1− αhj)


+ 1− αhN



 . (S8)

I.3. Application and continuum limit

Using the mean detachment time of a polymer strand (denoted as ω− in the main text) as our unit of time and
defining q = ω+/ω−, the model of the main text implies

∀n ∈ [1..N ] rn = n, gn = (N − n)q, (S9)
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which we insert into Eq. (S8) to obtain

hn =
n∑

j=1

1

j
(
N
j

)
qj

N∑

i=j

(
N

i

)
qi(1− αhi). (S10)

In Eq. (S10), the outermost sum is dominated by the very small values of j in the limit N →∞. We thus need only
consider small values of j when computing the innermost sum, which happens to be dominated by a value of i far
from the edges of the [1..N ] interval. We can thus take its continuum limit. Using Stirling’s formula, we obtain

hn ∼
N→∞

n∑

j=1

1

j
(
N
j

)
qj

∫ 1

0

√
N

2πx(1− x)
e−Nf(x)[1− αh(x, α)] dx, (S11)

where we have defined the continuum version of our generating function though h(x, α) = hNx(α), as well as the
pseudo free energy of the system

f(x) = x lnx+ (1− x) ln(1− x)− x ln q. (S12)

This free energy has a single minimum in xm = q/(1 + q) with a locally parabolic structure given by

f(x) = − ln(1 + q) +
(1 + q)2

2q
(x− xm)2 +O(x− xm)3, (S13)

which we illustrate in Fig. S1(b). The problem at hand is exactly analogous to a Kramers escape problem from the
bottom of this minimum to the n = 0 boundary condition, with N → ∞ playing the role of the low-temperature
limit.

I.4. Asymptotic simplifications

Using the Kramers analogy to our advantage, we compute the integral of Eq. (S11) using a saddle-point approxi-
mation. We thus find that for any x ∈]0, 1[:

h(x, α) ∼
N→∞

(1 + q)N [1− αh(xm, α)]
Nx∑

j=1

q−j

j
(
N
j

) . (S14)

Using Stirling’s formula for small values of j reveals that the argument of the sum in Eq. (S14) goes as (j−1)!×(Nq)−j .
Therefore, the terms of the sum are simply the terms in an expansion in powers of N . We keep only the lowest-order
term to find

∀x ∈]0, 1[ h(x, α) ∼
N→∞

τN [1− αh(xm, α)]. (S15)

where

τN =
(1 + q)N

Nq
(S16)

is the dimensionless version of the mean first-passage time presented in Eq. (4) of the main text.
Setting x = xm, Eq. (S15) implies

h(xm, α) ∼
N→∞

1

α+ τ−1
N

⇔ SNxm(t) ∼
N→∞

e−t/τN . (S17)

Finally, using Eq. (S15) again yields

∀x ∈]0, 1[ SNx(t) ∼
N→∞

−τN
dSNxm

dt
(t) = e−t/τN , (S18)

which is the exponential distribution presented in the main text.
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FIG. S2. Illustration of the similarity of our modeled stress response function with a stretched exponential. We plot the
relaxation modulus computed using Eq. (6) of the main text for N̄ ∈ [3, 5, 10, 15]. For each value of N̄ , we plot four values of
Nsat, namely Nsat = 0.1N̄ , 0.5N̄ , N̄ and 1.5N̄ , poff = 0.2. Each plot also mentions the value of the stretch exponent α and the
correlation coefficient r2.

II. LINK BETWEEN α AND Nsat/N̄

Here establish the connection between the stretch exponent α and the values of Nsat/N̄ shown in Fig. 4 of the
main text. To mimic the observation of an experimental step strain over a finite time window, we focus our attention
on the time interval between t = 0 and t = τ90, where τ90 is the time required to relax 90% of the stress, i.e.,
σ(τ90) = 0.1 × σ(0). We plot the relaxation curve given by Eq. (6) of the main text over this time window, then
perform a least-squares fit using a stretched exponential [Eq. (1) of the main text] with α and τ as fitting parameters.
As shown in Fig. S2, the agreement is excellent over all parameters used. The corresponding value of the fitting
parameters (τ and α) for a broader variety of N̄ and Nsat is also provided in Fig. S3. This suggests that experimental
curves that are well fitted by a stretched exponential could be equally well described by our model.
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FIG. S3. Best fit values of the stretched exponential parameters τ and α for a range of values of N̄ and Nsat. The right-hand-
side panel is identical to Fig. 4 of the main text.

III. TIME-TEMPERATURE COLLAPSE

Here we describe the procedure used to determine the binding energy ∆E in the three experimental systems
discussed in the main text. Equation (4) of the main text implies that the temperature dependence of the stress
response function can be eliminated by expressing it as a function of the rescaled time t̃ = teβ∆E . This should cause
the relaxation curves of a given system at different temperatures to collapse.

For each type of ligand, we have 5 datasets showing the stress relaxation function as a function of time at each
different temperature {T (α)}α∈[0,4] = {25◦C, 35◦C, 45◦C, 55◦C, 65◦C}. To enable the comparison between time-
rescaled datasets, we first define an interpolating function for the stress relaxation function at each temperature used.

We thus compute the set of interpolating coefficients
{
p

(α)
k

}
k

by perform a least-square fit of the following rational

function

P (α)(t) =
10∑

k=−3

p
(α)
k tk, (S19)

to the datapoints
{
t
(α)
i , σ

(α)(ti)
σ(α)(0)

}
i
. We furthermore define the interval of definition of P (α)(x) as the range over which

data is available, i.e., IP (α) =
[
0,max

i
t
(α)
i

]
.

We then perform the collapse of the {T (α)}α∈[1,4] interpolated curves onto the T (0) curve. To this effect we define

the set of rescaling coefficients {a(α)}α∈[1,4] and performs a separate time rescaling for each temperature: t̃ = tea
(α)

.
For each α ∈ [1, 4], we optimise the semidistance

D(P,Q) =

∫

IQ∩IP
[P (t)−Q(t)]2dt, (S20)

between the functions t→ P (0)(t) and t→ P (α)(tea
(α)

) with respect to a(α). The resulting collapsed curves are shown
in Fig. S4 (a,b,c). The optimal rescaling coefficients are plotted as a function of the inverse temperature 1/kBT in
Fig. S4 (d,e,f). Consistent with the time-temperature collapse hypothesis, this dependence is affine, and we use the
slope of the best fitting line as our value of the binding energy ∆E.

IV. FIT OF THE STRESS RELAXATION FUNCTION TO OUR THEORETICAL PREDICTION

In the main text, we fit the experimental curves with the stress relaxation function predicted by our model. We
then represent them on a log-lin scale to allow the simultaneous visualization of short and long time scales. In Fig. S5
we replot these curves in a lin-lin-scale, as well as a lin-log scale that emphasizes intervals of exponential relaxation
as straight lines.
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FIG. S4. Collapse of the relaxation modulus: (a-c) respectively the collapsed relaxation modulus of Fe3+, nanocages,
nanoparticles after the rescaling of the time for an optimized collapse. The curves are represented on a semilogarithmique axis,
but the collapsing procedure is perfomed on a lin-lin scale. (d-f) corresponding rescaling parameters as a function of 1/(kBT )
the inverse temperature. The slope of the line is −∆E and the legend gives the value of ∆E in kBT unit at 300K.

V. RATIONALIZATION OF THE POISSON DISTRIBUTION OF THE SUPERBOND SIZE p(N)

The polymers used in our experiments are 4-arms polyethylene glycol (PEG). At the end of each arm is a nitrocat-
echol ligand that allows crosslinker binding. In our model, we assume that the ends of a polymer are always attached
to a ligand. For this reason, the diffusion of such a polymer over a distance comparable to the polymer size occurs
on a time scale comparable to the time required to rearrange the bonds between crosslinkers, which corresponds to
the time required for the relaxation of the stress in the system. Let us consider that the 4-arm PEG are able to
diffuse over a volume v during the time of the experiment.We model the spreading of the polymers in the system by
discretizing the system into small boxes of volume v between which no polymer exchange occurs over the duration of
the experiment. As a result the distribution of the polymers over the boxes is due to the initial preparation of the
system. We assume that this processes places each polymer in a random box with equal probability. As a result, the
probability that a specific box contains n polymers is given by a Poisson distribution:

P (n) = e−ρPEGv
(ρPEGv)n

n!
, (S21)

where ρPEG is the average concentration of PEG in the system, and vρPEG is the mean (over the system) number of
PEG in a box of volume v. Equation (S21) is the basis for Eq. (5) of the main text.

VI. OUR MODEL CAN DESCRIBE A POWER LAW RELAXATION

As discussed in the main text, substituting the superbond size distribution Eq. (5) of the main text for an exponential
distribution

p(N) =
(

1− e−1/N̄
)
e−N/N̄ (S22)
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FIG. S5. Fits of the experimental curves : respectively lin-lin and lin-log representation of Fig. 5 in the main text.

yields a power-law relaxation regime provided that N̄ � 1, as shown in Fig. S6. Here we compute the value of the
relaxation exponent.

Since Eq. (S22) does not saturate at a finite N = Nsat, Eq. (6) of the main text becomes

σ(t)

σ(0)
=

+∞∑

N=1

p(N)

1− p(0)
e−t/τN with τN =

τ0e
β∆E

NpNoff

. (S23)

As the main dependence of τN on N is exponential, in the large-N̄ limit replacing the factor of N preceding pNoff by
the typical value N̄ induces only a small (logarithmic) error. We thus approximate

τN '
τ0e

β∆E

N̄pNoff

, (S24)

and also take the continuum limit of the sum of Eq. (S23). Defining the dimensionless time t̃ = tN̄/τ0e
β∆E , this

yields

σ(t)

σ(0)
∼

N̄�1

∫ +∞

0

p(N)e−t̃p
N
off dN. (S25)

We next change our integration variable to τ̃ = pNoff to find

σ(t)

σ(0)
∼

N̄�1

∫ +∞

1

γτ̃−(1+γ)e−t̃/τ̃ dτ ∼
N̄�1,t̃�1

Γ(1 + γ)t̃−γ , where γ = − 1

N̄ ln poff
> 0 (S26)

and where Γ denotes the gamma function. Equation (S26) implies the power law presented in Eq. (7) of the main
text, and its accuracy at long times is confirmed by the plots of Fig. (S6). As discussed in the main text, here an
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FIG. S6. Comparison between exact relaxation modulus of Eq. (S23) (solid lines) and the approximate expression of Eq. (S26)
(dashed lines).

exponential distribution of N combined with an exponential dependence of the relaxation time on N [Eq. (S23)]
result in a power law distribution of the relaxation times. This distribution is apparent in the integral on the left of
Eq. (S26), and eventually results in the power law relaxation. Note that the approximation of Eq. (S24) leads us to
ignore a possible logarithmic dependence of σ(t)× tγ on t, hence the small mismatch between the curves of Fig. S6.

VII. SCALING REGIMES FOR THE COMPLEX MODULUS

In the linear response regime, the Fourier transform of the stress is related to that of the strain ε through the
material’s complex modulus G:

σ(ω) = G(ω)ε(ω). (S27)

Denoting the Heaviside step function by H, we consider the response to a step strain ε(t) = ε0H(t) and thus obtain
σ(ω) by Fourier transforming Eq. (S23). Eq. (S27) then yields

∫ +∞

0

e−iωtσ(0)

Nsat∑

N=1

p(N)

1− p(0)
e−t/τN dt = G(ω)

∫ +∞

−∞
e−iωtε0H(t) dt (S28)

where the bounds of the left-hand-side integral stem from the implicit assumption that σ(t < 0) = 0 in Eq. (S23).
We compute both integrals in Eq. (S28) to find

G̃(ω) =

Nsat∑

N=1

p(N)

1− p(0)

iωτN
1 + iωτN

, (S29)

where G̃ is the dimensionless modulus obtained by normalizing G by the high-frequency elastic plateau σ(0)/ε0.

In the following we consider a generalization of Eq. (S22) where p(N) ∝ exp(−N/N̄) for N ≤ Nsat and p(N) = 0
for N > Nsat. We analyze the scaling behavior of the storage modulus G′(ω) = <[G(ω)] and the loss modulus
G′′(ω) = =[G(ω)] computed from Eq. (S29).

In the high-frequency regime ω � τ−1
1 , the system displays a Maxwell-like rheology:

G̃′(ω) ∼
τ−1
1 �ω

1 (S30a)

G̃′′(ω) ∼
τ−1
1 �ω

e−1/γN̄ (1− e−1/N̄ )

[1− e−(1+γ−1)/N̄ ]2
1

ωτ1
. (S30b)

We now consider the intermediate frequency regime τ−1
Nsat

� ω � τ−1
1 in the case Nsat � 1. Provided we also
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FIG. S7. Comparison between the storage and loss moduli computed from the exact expression Eq. (S29) (solid lines) and the
asymptotic expressions of Eqs. (S30-S32) (dashed lines). We use poff = 0.18 throughout. Left panel : plots in the large Nsat

limit (Nsat = 100), showing a good agreement with the power law regime of Eq. (S31) for two values of N̄ corresponding to
γ ' 0.116 and γ ' 0.0583. Right panel : plots for a smaller value of Nsat (Nsat = 30) showing the three distinct asymptotic
regimes. Here N̄ = 10 ⇒ γ ' 0.0583. The marker at ωτ1 = τ1/τNsat denotes the expected position of the low-frequency
crossover, while the high-frequency crossover is expected for ωτ1 ≈ 1.

assume 1� N̄ � Nsat, the approximate power law response of Eq. (S26) applies and we obtain

G̃′(ω) ∼
τ−1
Nsat
�ω�τ−1

1

{
πγ/2

sin(πγ/2)e
−1/N̄

(
ωτ1
N̄

)γ
if γ < 2

γ
γ−2e

−2/γN̄
(
ωτ1
N̄

)2
if γ > 2

(S31a)

G̃′′(ω) ∼
τ−1
Nsat
�ω�τ−1

1

{
πγ/2

cos(πγ/2)e
−1/N̄

(
ωτ1
N̄

)γ
if γ < 1

γ
γ−1e

−1/γN̄
(
ωτ1
N̄

)
if γ > 1

. (S31b)

Finally, at low frequencies ω � τ−1
Nsat

, the system again goes to a Maxwell-like rheology:

G̃′(ω) ∼
ω�τ−1

Nsat

A(γ, N̄)(ωτ1)2 (S32a)

G̃′′(ω) ∼
ω�τ−1

Nsat

B(γ, N̄)(ωτ1), (S32b)

where the functions A and B take simple forms in the Nsat � N̄ limit:

A(γ, N̄) =





1−e−1/N̄

N2
sat

exp[(2/γ−1)Nsat/N̄]
exp[(2/γ−1)/N̄]−1

if γ < 2
(

1− e−1/N̄
)
e(1−2/γ)/N̄Li2

[
e(2/γ−1)/N̄

]
if γ > 2

(S33a)

B(γ, N̄) =





1−e−1/N̄

Nsat

exp[(1/γ−1)Nsat/N̄]
exp[(1/γ−1)/N̄]−1

if γ < 1
(

1− e−1/N̄
)
e(1−1/γ)/N̄ ln

[
1

1−exp[(1/γ−1)/N̄]

]
if γ > 1

. (S33b)

Here Li2 denotes the polylogarithm function of order 2, which is defined as Li2(x) =
∑∞
k=1 x

k/k2.
The three successive regimes described by Eqs. (S30-S32) are clearly apparent in Fig. S7.

[1] Christophe Texier. Individual energy level distributions for one-dimensional diagonal and off-diagonal disorder. J. Phys. A
Math. Gen., 33:6095–6128, 2000.

[2] N G Van Kampen. Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam, 1992.


