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We present a comprehensive theory of the dynamics and fluctuations of a two-dimensional suspension of
polar active particles in an incompressible fluid confined to a substrate. We show that, depending on the sign
of a single parameter, a state with polar orientational order is anomalously stable (or anomalously unstable),
with a nonzero relaxation (or growth) rate for angular fluctuations, not parallel to the ordering direction, at
zerowave number. This screening of the broken-symmetrymode in the stable state does lead to conventional
rather than giant number fluctuations as argued by Bricard et al., Nature 503, 95 (2013), but their bend
instability in a splay-stable flock does not exist and the polar phase has long-range order in two dimensions.
Our theory also describes confined three-dimensional thin-film suspensions of active polar particles as well
as dense compressible active polar rods, and predicts a flocking transition without a banding instability.
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Biological systems and their artificial analogues, such as
vibrated granular layers [1] and self-propelled rollers [2], are
powered by energy supplied directly at the level of con-
stituent particles, which leads to macroscopic stresses and
currents. “Active hydrodynamics” [3–8], which describes
how nonequilibrium currents and forces affect the orienta-
tional order of anisotropic units, presents a general frame-
work to study the large-scale dynamics in such systems.
Active phases frequently defy expectations rooted in

equilibrium physics. Motile XY spins [3–5,9] on a substrate
display long-range orientational order even in two dimen-
sions, and anomalous number fluctuations with the stan-
dard deviation in number N of particles in a region growing
more rapidly than

ffiffiffiffi
N

p
[3,9–11]. Enhancing the noise in this

system yields an isotropic phase via an instability towards
an inhomogeneous, polarized banded phase ultimately
rendering the transition discontinuous [12,13].
Much of our understanding of polar active systems

[9,12,13] comes from studies that ignore any ambient
solvent, but biological systems are typically suspensions
in an incompressible fluid that mediates long-range hydro-
dynamic interactions. This aspect is well understood for
bulk suspensions [3,14,15], but subtleties arise for systems
confined to two dimensions by walls or adsorption on
substrates. The Stokesian hydrodynamic interaction,
although screened at leading order by the bounding
surfaces, leaks through in a weakened form through the
inescapable nonlocal constraint of incompressibility

[16–19]. Although active variants of incompressible mag-
nets [20] have been considered before [21,22], this does not
directly relate to the physics of polar suspensions in which
only the joint density of the active particles and fluid is
incompressible but the concentration of the polar particles,
while conserved, may fluctuate.
In this Letter we present a general theory of a suspension

of motile polar particles in a thin film of incompressible
fluid, or, equivalently, a polar active gel [3] bounded by
planar solid walls, taking the effects of incompressible flow
correctly into account. Our main results are as follows.
(i) Through the interplay of motility and incompressibility,
a flock is stable for all wave vector directions, with
deformations of the orientational broken-symmetry varia-
ble relaxing on a finite, nonhydrodynamic timescale as the
wave number q → 0 for almost all wave vector directions.
This contradicts the claimed generic bend instability [2] of
confined incompressible flocks, and is, of course, contrary
to conventional expectations [23] of a vanishing relaxation
rate, in the long-wavelength limit, for Nambu-Goldstone
modes [24]. The “gapping” of the orientational Nambu-
Goldstone mode due to the active forcing of the velocity
field of an incompressible fluid is closely akin to
Anderson’s original formulation [25] of the mechanism
[26] for granting “mass” to such modes through the long-
range character of the Coulomb interaction. (ii) Motility
and incompressibility suppress the instability towards the
inhomogeneous banded state that generically occurs in
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compressible polar systems between the ordered and the
disordered states, implying that a direct transition from an
isotropic state to a homogeneous flock is possible, without
the intervention of a banded phase. (iii) The variance of
orientational fluctuations is nondivergent for q → 0, with a
correlation length that is finite for any nonzero motility. As a
consequence number fluctuations are normal, with variance
proportional to the mean [27]. (iv) Our main results remain
correct up to very large length scales even in weakly
compressible systems [1,9,29]. Our theory is relevant to
all current experiments on planar confined active polar
suspensions [30–32], which we illustrate by showing how it
emerges from the averaging of the dynamics of three-
dimensional polar fluid confined in one direction.
We start by constructing the general dynamical equations

for the polarization pðr; tÞ and the concentration cðr; tÞ of a
collection of active units suspended in a fluid with the total
velocity field of the particles and the fluid being uðr; tÞ,
where r is a two-dimensional position vector. The joint
density ρ of the particles and the fluid is incompressible,
i.e., _ρ ¼ 0 implying ∇ · u ¼ 0. In the absence of activity
and fluid flow, the equilibrium relaxation derives from a
Landau–de Gennes free energy, which we write in the
single Frank constant approximation for simplicity [33]:

H ¼
Z
r

�
αðcÞ
2

jpj2 þ β

4
jpj4 þK

2
j∇pj2 þ γp ·∇cþ c lnc

�
;

ð1Þ
where the sign of αðcÞ determines the stability of the
isotropic, flow-less phase. A negative αðcÞ gives rise to a
nonzero polarization, which remains bounded due to the β
term and whose heterogeneities are suppressed by the
elastic constant K. The γ term describes the tendency of
the polarity to align along or opposite to concentration
gradients [34], while the last term is characteristic of an
ideal solution (setting kBT ¼ 1).
To lowest order in gradients, the generic dynamical

equation for p is

∂tp ¼ Λu −
δH
δp

; ð2Þ

where the coefficientΛ, whose sign depends on the detailed
shape of a polar particle [1,18], aligns the polarizationvector
with the local suspension velocity and is specific to systems
in contact with a substrate [1,18,35]. We treat it as inde-
pendent of the direction of p, which does not qualitatively
modify our conclusions [36]. The coefficient in front of the
second term of the right-hand side of Eq. (2) is set to 1
through a proper choice of time units. Advective and self-
advective terms, which are discussed in Ref. [36] are not
displayed in Eq. (2) since they turn out to be less relevant
than the terms retained in Eq. (2) even in the ordered phase.
Ignoring inertia, Newton’s second Law reduces to force
balance which to lowest order in gradients is

Γu ¼ υp −∇Π − Λ
δH
δp

; ð3Þ

where Γ is the coefficient of damping by the substrate andΠ
is the pressure that enforces incompressibility. υp denotes
the active polar force density of the particles. The final term
on the right-hand side of Eq. (3) is required to ensure that the
steady state in the limit of vanishing activity reduces to the
equilibrium distribution. Finally, the continuity equation for
the concentration field is

∂tcþ u · ∇c ¼ −∇ ·

�
υpcp −Dcc∇ δH

δc

�
; ð4Þ

where vpcp denotes an active concentration current due to
the motility of the particles [3–5,9,44] [45]. The final term
leads to standard diffusive dynamics. Equations (2)–(4) are
similar to the ones for two-fluid polar active systems [1],
with the only difference being the incompressibility
constraint.
To determine the stability of a homogeneous isotropic

(jpj ¼ 0) state, we perform a linear stability analysis of
Eqs. (2) and (3). For Λυ > 0, the state is destabilized when

α̃ ¼ αðcÞ − Λυ
Γþ Λ2

¼ αðcÞ − w < 0: ð5Þ

Thus, for υ > 0, a positive alignment parameter Λ rein-
forces the moving particles’ alignment, thereby favoring
the instability of the homogeneous disordered phase as in
Ref. [18] (also see Ref. [36]). Following this instability, a
homogeneous ordered phase with p ¼ p0x̂, c ¼ c0, and
u ¼ u0x̂ may form, where p2

0 ¼ jα̃=βj and u0 ¼ ðw=ΛÞp0.
To study its stability, we project Eq. (3) transverse to the
wave vector q to eliminate the velocity field. Introducing
the polarization fluctuations δp ¼ ðp0 þ δpÞðcos θx̂þ
sin θŷÞ − p0x̂, we obtain equations for small deviations
from the ordered state: ∂tðδc; δp; θÞ ¼ M · ðδc; δp; θÞ. The
three eigenvalues of matrix M characterize relaxation
modes of the system. Naively, the presence of a con-
servation law for the concentration and broken rotation
symmetry would suggest that two of these modes should
be “hydrodynamic”; i.e., the associated eigenvalues vanish
in the q → 0 limit. A detailed calculation, however,
reveals that this is not correct [36] in the presence of
the motility-induced long-range interactions mediated by
fluid incompressibility. Such long-range interactions sup-
press fluctuations in the ordered state, as in dipolar XY
models [20,46] or superconductors [25]. Here, they imply
that our system has only one hydrodynamic mode
associated with the conserved concentration field with
relaxation rate κc ∝ q2, the stability of which we discuss
later. The remaining two eigenvalues, which govern the
dynamics of the polarization fluctuations, are nonhydro-
dynamic, and go to a finite limit as q → 0:
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κ�ðϕÞ ¼ −
1

2

�
wþ 2jα̃j

�
1þ Λ2

Γ
sin2ϕ

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
wþ 2jα̃j

�
1þ Λ2sin2ϕ

Γ

��
2

− 8jα̃jwsin2ϕ
�
1þ Λ2

Γ

�s �
; ð6Þ

where ϕ is the angle between q and x̂. For w < 0, one of the
eigenvalues is always positive, implying a generic insta-
bility. For w > 0, both κþ and κ− are stabilising, though one
of the two eigenvalues (κ−) vanish for fluctuations with
wave vectors precisely along the ordering direction. This
implies that all components of the polarization vector have
a finite exponential-decay time to their steady state value
even in infinite systems, except for perturbations purely in
ordering direction (i.e., ϕ ¼ 0), for which κ−ð0Þ ∼
−Kpð0Þq2 [the somewhat cumbersome form of KpðϕÞ is
displayed in Ref. [36] ]. Crucially, Kp is not generically
negative along any wave vector direction including along x̂
even at arbitrarily high activities [10]. Of course, Kp can
turn negative along x̂ for certain choices of phenomeno-
logical parameters, leading to an instability of the polar
phase. However, in this Letter we focus on the case in
which Kp is stabilizing, leading to exceptional stability of
the ordered phase to polarization fluctuations (since these
fluctuations decay exponentially along almost all direc-
tions), a consequence of the interplay of active motility υ,
passive velocity response throughΛ, and incompressibility-
induced long-range interactions.
While Eq. (6) demonstrates that two of the eigenvalues

of the dynamical matrixM are stabilizing, its third and only
hydrodynamic eigenvalue κcðϕÞ also has to be negative for
the existence of a homogeneous polar phase (see Ref. [36]
for the expression of κc deep in the ordered phase). Close to
the transition (i.e., for α̃ → 0−), this eigenvalue is known to
always turn positive for ϕ ¼ 0 in dry compressible systems
[3], implying a generic instability towards an inhomo-
geneous, banded phase [12,13,47,48]. In our suspension of
active particles in an incompressible fluid, however, the
real part of this eigenvalue, in the limit α̃ → 0, becomes
isotropic and does not change sign suppressing this
instability for all −γυp < Dcw=c0, which is simply the
condition for the stability of the homogeneous flock:

lim
α̃→0

κcð0Þ ¼ −
�
Dc þ

c0γυp
w

�
q2: ð7Þ

As a result, the transition to the ordered state in this system
may not necessarily proceed via a banded phase unlike in
dry flocks.
To determine the effect of noise on the ordered

phase of our system, we first compute the static structure
factor of angular fluctuations in the presence of a zero-
mean Gaussian white noise ξðr; tÞ in Eq. (2) with
hξðr;tÞξðr0;t0Þi¼2Bδðr−r0Þδðt−t0Þ. In the aligned phase,
at small wave vectors, this yields

lim
q→0

SðqÞ ¼ lim
q→0

hjθðqÞj2i ¼ Bq2

Kpð0Þq4x þ wq2y
: ð8Þ

The integral of Eq. (8) over wave vectors q converges,
implying a finite amplitude for the angular fluctuations and
thus the existence of a long-range ordered aligned polar
phase. Furthermore, the dynamic structure factor of angular
fluctuations [36] is also singularly modified due to the wave
vector-independent relaxation rate—unlike usual systems
which spontaneously break a continuous symmetry, it has
no zero-frequency pole in the zero wave number limit
except when this limit is approached along q ¼ qx̂.
To verify that these conclusions, which we obtained by

linearizing Eqs. (2)–(4), is not modified by the inclusion of
nonlinearities, we consider the simple case of a flock in
which number is not conserved [49]. In this simple case,
our model exactly maps onto the polar flock with constraint
∇ · p ¼ 0 studied in Refs. [21] [36]. This mapping ulti-
mately yields exact equal-time exponents of the ordered
phase via a transformation to the KPZ equation [36]. This
implies that our model, in which there is no explicit
constraint on p, also has long-range order in two dimen-
sions with the same roughness and anisotropy exponents as
in Ref. [21]. This relation between the nonlinear theory of
polar swimmers without number conservation in incom-
pressible polar fluid and a theory of a suspension of polar
active particles with ∇ · p ¼ 0 is unusual; for instance, an
apolar system in an incompressible fluid [10] does not
correspond to a theory in which∇∇:Q ¼ 0, whereQ is the
apolar order parameter. In addition, removing the condition
of fixed concentration introduces additional relevant non-
linearities and spoils the mapping, likely resulting in an
ordered phase with distinct behavior.
Beyond the existence of an ordered phase in two

dimensions, a hallmark of active matter physics is the
possibility of anomalous number fluctuations. To assess
their existence in our system, we calculate the static-
structure factor of density fluctuations. We find that the
number fluctuations scale as

ffiffiffiffi
N

p
as in equilibrium systems

[36], despite the presence of an active particle current ∝ p
in Eq. (4). Indeed, since all components of p have fast,
nonhydrodynamic relaxation rates [50], the polarization
aligns with any gradient in concentration, i.e., p ∼∇c.
Therefore, the active current ∝ p is equivalent to a passive
diffusive current, implying equilibriumlike statistics for the
concentration fluctuations. This is a result of the nonzero
restoring torque for orientational distortions even in the
limit of long wavelengths [27].
While the above results are directly relevant for the

experiments on single layers of motile particles (such as a
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more strongly confined variant of Refs. [2,28], which
would have an effectively two-dimensional incompress-
ibility constraint), our theory also describes the effective
thickness-averaged dynamics of three-dimensional films of
polar active particles in an incompressible fluid of lateral
dimension L, confined along the z direction over a length
scale h ≪ L. To demonstrate this, we describe the three-
dimensional polar fluid by the three-dimensional polariza-
tion vector p̄ðx̄; tÞ ¼ ðp̄⊥; p̄zÞ, velocity ūðx̄; tÞ ¼ ðū⊥; ūzÞ
and particle number c̄ðx̄; tÞ, where x̄ is a three-dimensional
position vector, and p̄⊥ and p̄z and ū⊥ and ūz are the
projections transverse to and along the confining direction
of the three-dimensional polarization and velocity, respec-
tively. We further denote the three-dimensional gradient by
∇̄. The dynamics is described using a standard set of
constitutive equations [51,52], on which we use the
lubrication approximation of thin-film flows [53] to project
our equations in two dimensions, exploiting the fact that the
gradients along z are large, namely, ∂ z̄ ¼ Oð1=hÞ ≫ ∂ x̄; ∂ ȳ

[36]. The thickness average of the three-dimensional
viscous force density η̄∇̄2ū, with η̄ being the viscosity
of the three-dimensional fluid, yields the frictionlike force
−Γu in Eq. (3) to lowest order in h=L, where Γ ¼ 12η̄=h2

and u is the thickness-averaged velocity in the xy plane,
with the three-dimensional incompressibility condition
translating into ∇ · u ¼ 0. Beyond this standard viscous
force and other passive terms reminiscent of classical
hydrodynamics, our three-dimensional dynamical equa-
tions feature two three-dimensional active polar force
densities, namely, ∇̄2p̄ and ∇̄ · ðp̄ p̄Þ [52]. The former
characterizes the fore-aft symmetry around, and hence the
motility of, an elementary active object. Upon thickness
averaging it leads to the two-dimensional propulsive force
∝ p of Eq. (3), where p is the thickness averaged transverse
polarization p̄⊥. The latter active term determines the
contractile or extensile character of active units, and leads
to a force ∝ ∇ · ðppÞ, which is subdominant at large lateral
scales and is thus not included in our two-dimensional
equations. We similarly obtain Eq. (2) for the polarization
field by choosing walls forcing a nontrivial z̄ dependence
on the polarization p̄ through the boundary conditions
p̄z̄¼0 ¼ ẑ and p̄z̄¼h ¼ −ẑ. Polarization is generically
affected by shear, which we describe through the
symmetric strain rate tensor Ū ¼ ð1=2Þ½∇̄ ūþð∇̄ ūÞT �.
This gives rise to two different contributions to ∂tp̄ in
the three-dimensional polarization equation, namely,
∇̄ · Ū ¼ ð∇̄ · ∇̄Þū, which describes the alignment of the
polarization vector with the local gradients of the shear
rate, and p̄ · Ū, which describes its alignment to a local
shear flow. Again using lubrication arguments, we obtain
the first term on the right-hand side of Eq. (2) from the
former. The latter leads to the usual flow alignment, which
orients the polarity along the two-dimensional velocity
gradient and due to its subdominance is not included in

Eq. (2). Finally, the thickness-averaged concentration
Eq. (4) is obtained by imposing no-flux boundary condition
on the three-dimensional continuity equation for c̄.
While strictly valid for incompressible systems, our

conclusions regarding the nonhydrodynamic relaxation
of angular fluctuations and nongiant number fluctuations
are also applicable up to large length scales in weakly
compressible systems such as fluidless collections of motile
particles or active polar rods in a dense bead medium [1].
To characterize such systems, we reintroduce the dynamics
of their overall density field ρ, which satisfies the con-
servation equation ∂tρ ¼ −∇ · ðρuÞ. We assume a linear
relation between small changes in the pressure Π and the
density ρ: ΠðρÞ − Πðρ0Þ ≃ δρ=ðχρ0Þ, where χ is the fluid’s
compressibility, δρ ¼ ρ − ρ0, ρ0 is the average density and
consider a system deep in the ordered phase, implying a fast
relaxation of δp to zero. Here, we consider only the coupled
dynamics of ρ and θ described by Eqs. (2)–(3) (consid-
eration of fluctuations in c does not change our qualitative
result [36]). Defining the nondimensional compressibility
χ̃ ¼ χKpρ0Γ, we check the fate of the relaxation rate of
angular fluctuations in our weakly compressible fluid
(χ̃ ≪ 1). Focusing on the direction ϕ ¼ π=2, which dis-
plays the strongest incompressibility-induced stabilization
in the incompressible case, we calculate the eigenvalues
associated with the coupled density and orientational
dynamics ðδρ; θÞ:

κ0� ¼ −
wq̃2

2χ̃

"
1þ χ̃ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − χ̃Þ2 − 4χ̃

q̃2

s #
; ð9Þ

with q̃ ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffi
Kp=w

p
. κ0þ ∼ −wq̃2=χ̃ diverges as χ̃ → 0 (see

Fig. 1), indicating that the pressure homogenizes quickly in

FIG. 1. A log-log plot of the dimensionless decay rates for the
two eigenmodes associated with the coupled dynamics of the
total density and angular fluctuations in a weakly compressible
system [Eq. (9)]. While both modes display a diffusive (slope 2)
relaxation for small dimensionless wave vector q̃, taking the
dimensionless compressibility χ̃ to zero shifts the blue curve to
the left, implying that the relaxation rate associated with any
finite q̃ goes to infinity. Meanwhile, the second relaxation rate
(black curve) develops a wide q̃-independent plateau, mimicking
the nonhydrodynamic relaxation rate associated with a truly
incompressible system.
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a nearly incompressible medium and the orientation θ
relaxes at a rate κ0−. In an incompressible system, this
relaxation rate went to a finite limit as q → 0. This is not
strictly the case here, as κ0− ∝ −q̃2 for wave vectors
q̃ < χ̃1=2. However, κ0− has a plateau for intermediate wave
vectors χ̃1=2 < q̃ < 1 that extends to q → 0 for χ̃ → 0. As
the smallest wave vector realizable in a system of size L is
π=L, a weakly compressible polar fluid is indistinguishable
from a truly incompressible one for L ≪ 1=

ffiffiffĩ
χ

p
, and is,

therefore, deprived of giant-number fluctuations, while
larger systems display it.
While our discussion has thus far focused on polar

particles that align with the local flow (w > 0), consistent
with existing experiments [1,2], systems with w < 0 are
conceivable [54]. One possibility would be particles that
point opposite to the local flow (Λ < 0) while moving
along their polarity (υ > 0). In this case the homogeneous
ordered phase is unstable and all perturbations with wave
number smaller than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K=ðjwj sin2 ϕÞ

p
grow exponentially.

This instability, which leads to a finite correlation length for
the polarization field, is distinct from the one that leads to a
polarized, concentration-banded state in dry active systems
[12]. Nevertheless, since the polarization correlation
diverges precisely along the ordering direction, a banded
chevron state with counterpropagating polar lines may be
the steady state in this case.
The analysis presented here clarifies theoretical expect-

ations on the structure of number fluctuations of motile
systems in confined incompressible fluid, which have been
a source of confusion [2]. It moreover provides a frame-
work to analyze the dynamics of numerous quasi-2D
biological systems, which are almost invariably immersed
in an incompressible fluid, from the scale of the intra-
cellular medium [30] to that of crawling cell layers [55].
Its predictions of nonhydrodynamic relaxation, the pos-
sible absence of a banded phase at the disorder-order
transition, and normal number fluctuations should be
testable in any of these contexts or in artificial chemotactic
colloids [56]. Our results are also largely applicable to
weakly compressible systems such as dense granular layer
of polar rods or dense mixtures of rods and beads [1].
From a theoretical standpoint, our work establishes that
hydrodynamic interactions singularly alter equal-time as
well as time-displaced correlations of the orientation even
when the long-wavelength fluctuations of the fluid
momentum density are damped by friction with a substrate
via a nonequilibrium analog of the classic Anderson-Higgs
mechanism. Alongside the breaking of the Hohenberg-
Mermin-Wagner theorem [4,9] and existence of anoma-
lously large fluctuations [3,5,9], this finding constitutes
another striking violation of equilibrium expectations in
active matter.
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