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Active materials, composed of internally driven particles, have been shown to have properties
that are qualitatively distinct matter at thermal equilibrium. However, most spectacular departures
from equilibrium phase behaviour were thought to be confined to systems with polar or nematic
asymmetry. In this paper we show that such departures are also displayed in more symmetric phases
such as hexatics if in addition the constituent particles have chiral asymmetry. We show that chiral
active hexatics whose rotation rate does not depend on density, have giant number fluctuations. If
the rotation-rate depends on density, the giant number fluctuations are suppressed due to a novel
orientation-density sound mode with a linear dispersion which propagates even in the overdamped
limit. However, we demonstrate that beyond a finite but large lengthscale, a chirality and activity-
induced relevant nonlinearity invalidates the predictions of the linear theory and destroys the hexatic
order. In addition, we show that activity modifies the interactions between defects in the active
chiral hexatic phase, making them non-mutual. Finally, to demonstrate the generality of a chiral
active hexatic phase we show that it results from the melting of chiral active crystals in finite
systems.

Active matter isdriven out of equilibrium by a contin-
uous supply of energy at the scale of constituent par-
ticles which couples with the underlying asymmetry of
the system leading to macroscopic forces and currents
[1–3]. Active hydrodynamics [4, 5], a continuum theory
for such nonequilibrium states, have been constructed for
multiple active liquid-crystalline phases and have, more
recently, been extended to include chiral asymmetry [6–
10]. This extension has important experimental implica-
tions – materials such actin or microtubule filaments [11]
or even cells that are microscopic constituents of multi-
ple frequently-studied biological systems are themselves
chiral. The interaction between chirality and activity,
especially in two dimensions, leads to several surprising
features including the suppression of the generic instabil-
ity [1, 12] in orientationally-ordered active fluids [13], odd
viscosity waves in isotropic chiral fluids [14] and waves in
overdamped chiral active solids [15].

In this paper we consider large scale properties of hex-
atic chiral active systems in two dimensions. Chiral hex-
atic ordering can arise upon dislocation unbinding of chi-
ral active solids [15] just as passive hexatic ordered phases
result from the solid phase. Active Brownian particles
that are chiral can be engineered and should form such
phases, just as achiral active Brownian particles form
hexatic phases [16]. Further, hexatic correlations are
routinely observed in cell-layers and tissues [17, 18] and
since it is known that multiple cells are chiral [19] they
should be described by our theory. A chiral phase with
local hexagonal correlations has also been observed in
spermatozoa at a planar interface [20] and bacteria has
been shown to organise into a chiral hexagonal crystal
[21]. Furthermore, hexagonal organisation of chiral mi-
croscopic units is common even at the subcellular level –
in clathrin coats for instance – and our theory will form

the basis for the study of topological defects in this sys-
tem which may, in the future, lead to an understanding
of topology transition in this system [22]. Beyond hexat-
ics, the hydrodynamic theory we construct also describes
all n−atic chiral active phases, for n > 2 and therefore,
our results are valid for all of them, including tetratics.
Finally, as we will discuss at the end of the paper, our
theory may be more widely applicable even in systems in
which microscopic constituents are not themselves chiral.

Much of the interesting phase behaviour in active sys-
tems arise from the interaction of the nonequilibrium
drive with dipolar or quadrupolar asymmetry. This in-
teraction leads to “sound modes” with linear dispersion
in overdamped polar active systems [23] and giant num-
ber fluctuations in polar and nematic active systems
[1, 23–25]. However, it was believed that more symmet-
ric phases will not display such spectacular departures
from equilibrium behaviour [16, 25]. This is broadly cor-
rect for achiral hexatic phases. However, we demonstrate
that this is not correct for chiral hexatic phases. We
show that the active hexatic phase has anomalous num-
ber fluctuations – the root-mean-squared number fluctua-
tions

√
δN2 in a region containing on average N particles

scaling as N instead of
√
N as in equilibrium – when the

global rotation rate is either 0 or constant [13]. However,
a density-dependent rotation rate changes the picture sig-
nificantly: the giant number fluctuations are suppressed
and the coupled density-orientational fluctuations lead to
either a wave with a linear dispersion relation or an insta-
bility with a linear growth rate at small wavevectors even
in the overdamped limit. However, the interplay of ac-
tivity and chirality also yields a relevant nonlinearity, in
the renormalisation-group sense, leading to the destruc-
tion of quasi-long-range-ordered (QLRO) hexatic state in
two dimensions and implying that the earlier predictions
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only applies for systems below a critical size. We then
demonstrate that the behaviour of both single topologi-
cal defects and interaction between defects are modified
by chirality and activity. A single defect spontaneously
rotates and its angular far-field is modified due to the in-
terplay of activity and chirality. The force between two
oppositely-charged defects is also modified and becomes
non-mutual – the magnitude of the force exerted by a
positively charged defect on a negatively charged one is
different from that exerted by the negatively charged de-
fect on the positive one, which leads to a directed mo-
tion of a defect-pair on a substrate. This modification of
the defect-interaction may lead to defect-separation and
destruction of the ordered phase, but the non-mutual in-
teractions also opens up the possibility of more exotic
behaviour such as defect charge-separation. Finally, we
will discuss how an active chiral hexatic emerges from a
chiral solid and relate the phenomenological coefficients
in the chiral hexatic to those in the active solid.

We first discuss non-rotating hexatics on a substrate.
The local density of the particles is described by ρ(x, t)
which obeys a continuity equation ∂tρ = −∇·(ρv) where
v(x, t) is their velocity field. The six-fold-symmetric
phase is characterised by the complex order parameter
Ψ = ψe6iθ(x,t) where, for hexatic phases formed of cir-
cular particles, θ(x, t) denotes the orientation of the line
joining two neighbouring particles with respect to an ar-
bitrary but fixed axis (see Fig. 1). It can also describe
the orientation of more complex elementary units such
as the hexagonal structures formed by clathrin triskelia
[22]. The small angular deviations about the perfectly
ordered state is described by

∂tθ =
1

2
εij∂ivj + γc∇ · v − Γ6

δF

δθ
+ ξθ(x, t) (1)

where F =
∫
drK(∇θ)2/2 + f(ρ) is the free energy with

f(ρ) being a function of density, Γ6 is a dissipative kinetic
coefficient, ξθ(x, t) is a Gaussian white noise of strength
∆θ and

ε =

(
0 1
−1 0

)
(2)

is the Levi-Civita tensor. The first term on the R.H.S.
of (1) denotes the precession of the angular distortion in
a local vorticity field [26]. The second, with a chiral but
passive coefficient γc, leads to a chiral precession due to
a local isotropic compression or dilation. The third term
controls the relaxation of the bond-angle order parameter
to its equilibrium value in the absence of activity and
flow. Finally, the equation for the velocity field is

ρ∂tv = −Γv − γcK∇∇2θ − K

2
(ẑ ×∇)∇2θ − ρ∇δF

δρ

− ζẑ ×∇θ − ζcẑ × (ẑ ×∇)θ + Γcẑ × v + ξv (3)

The terms in the first line of (3) are passive forces, with
the first being the usual frictions and the others being

θ

Achiral active force
Vectorial asymmetry

∝ − ζ∂xθ
Chiral active force

Left-right symmetry breaking

∝ ζc∂xθ

x

FIG. 1: Illustration of the angle-dependent active
forces. For a distortion of the hexatic along x̂, the
achiral active force, denoted by the green arrow, is
directed along the natural vectorial asymmetry

direction. However, the direction of the force ∝ ζc does
not correspond to any natural vectorial asymmetry and
requires chiral or left-right asymmetry. Inset, we show
the microscopic chirality of a single particle, with the
handedness being denoted by a circular arrow, which

leads to this asymmetry.

passive couplings to the orientation and density fields.
The first three terms in the second line are active while
the last is a Gaussian white noise of strength ∆v. The
first active term, with the coefficient ζ, is an achiral force
equivalent to the one discussed in [25]which can only be
present in systems which do not conserve angular mo-
mentum [27]. The second, with a coefficient ζc is explic-
itly chiral, with the handedness being encoded in the sign
of ζc (see Fig. 1). However, this can be reexpressed as
ζc∇θ and is not a source of any internal angular momen-
tum density. The final term is an active chiral friction
and has the same form as a Lorentz force on a charged
particle in a plane in the presence of a magnetic field
perpendicular to the plane.

We eliminate v using (3) in the overdamped limit to
obtain coupled hydrodynamic equations for the density
and angle fields in the Fourier space:

∂tθ = −q2

[(
Γ6K +

Γcζc − Γζ + 2γc(Γζc + ζΓc)

2(Γ2 + Γ2
c)

)
θ

− Γc + 2Γγc
2(Γ2 + Γ2

c)
ρ

]
+ ξθ (4)

∂tρ = −q2ρ0

[
−Γζc + ζΓc

Γ2 + Γ2
c

θ +
Γ

Γ2 + Γ2
c

ρ

]
+ ξρ. (5)

where ξρ is a conserving Gaussian white noise inherited
from (3) and has the correlation q2∆v/(Γ

2 + Γ2
c). In

achiral but active hexatics, the θ and ρ equations would
have been linearly decoupled at this order in wavevec-
tors. The coupling to the angle field in (5), which is
purely chiral, yields a mass density current ∝ iqθ which
in the steady-state must be balanced by diffusive cur-
rent ∝ iqρ [28]. Therefore, density fluctuations in chiral
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FIG. 2: Mechanism of a wave with a linear dispersion or
an instability with growth-rate ∼ q in hexatics with

density-dependent rotation rates. The density gradient
(denoted by the colour gradient) leads to faster particle
rotation in the less-dense region and therefore, to an
orientation gradient. When the orientation gradient
leads to a current from the dilute to the dense region,
the ordered homogeneous state is destabilised. The

propagating wave is obtained when the angular gradient
leads to a particle current from the denser to the more

dilute regions.

active hexatics must scale as orientational fluctuations
just as in active nematics. The orientational fluctuations
are Goldstone modes of broken rotational symmetry and
limq→0〈|θ|2〉 ∼ 1/q2 [29] and as we explicitly show in [30];
this implies that the static structure factor of density fluc-
tuations is limq→0〈|δρ|2〉 ∼ 1/q2. This is in contrast to
passive systems and achiral active hexatics in which it
goes to a constant as q → 0. The number fluctuations
are, therefore, giant – a region containing on average N
particles must have R.M.S. fluctuations

√
δN2 ∼ N –

which was hitherto believed to require polar or nematic
asymmetry [16, 25]. This demonstrates that all n−atic
systems, including tetratics and hexatics should display
giant number fluctuations if they are chiral.

We now consider the chiral hexatics which rotate spon-
taneously – this is a purely chiral nonequilibrium phase
in which the argument of the order parameter Ψ(x, t) =
ψe6i(θ−Ωt) rotates spontaneously [31]. We must, there-
fore add Ω to the R.H.S. of (1), where

Ω(ρ) = Ω(ρ)|ρ=ρ0 +
∂Ω

∂ρ

∣∣∣∣
ρ=ρ0

δρ = Ω0 + Ω1δρ. (6)

The constant rotation rate can be eliminated by simply
transforming to a rotating reference frame with θ → θ −
Ω0t implying that the results discussed for a non-rotating
active chiral hexatic also apply to its steadily rotating
counterpart. However, a density-dependent rotation rate
fundamentally modifies the phase behaviour. The lowest

order in wavevector equation for the angle field in a frame
rotating at Ω0 is ∂tθ = Ω1δρ + O(q2) while the density
dynamics is still described by (5). This yields a linear
dispersion ω± = ±cq where

c =

√
−ρ0Ω1(Γcζ + Γζc)

Γ2 + Γ2
c

. (7)

When Ω1(ζcΓ + Γcζ) < 0, i.e. either when the rotation
rate slows down with increasing density and a gradient of
the angle field leads to a mass current in the direction of
the gradient or when the rotation rate increases with den-
sity and an angular gradient leads to a mass current in the
opposite direction, this leads to a propagating density-
orientation wave with a linear dispersion. Such a linear
sound-wave-like mode in an overdamped system is only
possible in an active system and was, in addition, thought
to require polarity [1, 23, 28]. Here, however, they arise
due to chiral asymmetry. This chiral active current also
reduces the number fluctuations which now obeys the law
of large number: limq→0〈|δρ|2〉 ∼ const. [30]. Heuristi-
cally, since ω ∼ q and −iωδρ ∼ −q2θ, δρ ∼ −iqθ and
therefore, 〈|δρ|2〉 ∼ q2〈|θ|2〉 ∼ q2(1/q2). Eq. (7) further
implies that when Ω1(ζcΓ + Γcζ) > 0, the homogeneous
hexatic phase is unstable with a growth rate of fluctua-
tions ∝ q (see Fig. 2). If Ω1 > 0 and (ζcΓ + Γcζ) > 0,
an angular gradient leads to a mass current in the di-
rection of the gradient leading to an increase in density.
This higher density leads to a local increase of the rota-
tion rate reinforcing the angular gradient and leading to
an instability of the homogeneous hexatic state, possibly
towards a patterned structure.

We have till now considered only linear deviations away
from the steady-state. We now check whether nonlinear
terms affect the conclusions reached using the linear the-
ory. For this, we first consider a “Malthusian” hexatic [32]
i.e, one in which the density is not globally conserved, but
locally held fixed. The nonlinearity with fewest gradi-
ents and fields in the equation for angular fluctuations
∼ (∇θ)2 which arises from the advective nonlinearity
v·∇θ in the equation for angular fluctuations, since v has
a chiral contribution ∝ ∇θ. The nonlinear equation of
motion for the angle field of a noisy Malthusian hexatic,
upon eliminating the velocity field is

∂tθ =
λ

2
(∇θ)2 + K̄∇2θ + ξθ (8)

where λ = −2Γζc + ζΓc/(Γ
2 + Γ2

c) and

K̄ =

(
Γ6K +

Γcζc − Γζ + 2γc(Γζc + ζΓc)

2(Γ2 + Γ2
c)

)
(9)

in terms of the previously introduced variables. Eq. (8)
has the same form as the KPZ equation with the only
distinction being that θ is a compact variable. From the
studies of the KPZ equation, it is known that the nonlin-
earity with the coefficient λ is marginally relevant in two
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FIG. 3: Non-mutual interaction between ±1/6 defects
(we have schematically shown ∇θ for each defect; see

[30]). The passive interaction between the defect-pair is
attractive and mutual, but the active force may be

non-mutual. Therefore, a +1/6 defect may be attracted
to a −1/6 defect while repelling the −1/6 defect leading
to the motion of the centre-of-symmetry of the ±1/6

pair.

dimensions i.e., it grows larger upon renormalisation, in-
validating the linear theory at thermodynamic scales. In
the surface growth problem, this yields the “rough state”
at large scales with an algebraic scaling of height fluctu-
ations. In the context of the hexatic phase this implies
that the hexatic state loses even algebraic order beyond
the scale L∗ ∼ e16πK̄3/∆θλ

2

[33, 34]. While this calcula-
tion is for a Malthusian hexatic system, a coupling to the
density field cannot reduce the angular fluctuations. The
lowest order nonlinearity in the angle field equation that
couples density and angular fluctuations has the form
∇δρ · ∇θ. Since the linear static structure factor of the
density fluctuations is either as large as angular fluctu-
ations (when the spontaneous rotation-rate doesn’t de-
pend on density) or smaller (for density-dependent rota-
tion rate) this nonlinearity is either as relevant as (∇θ)2

or less relevant than it. In either case, the conclusion that
even algebraic order is destroyed due to the (∇θ)2 non-
linearity cannot be modified by the extra nonlinearities
coupling density and angular fluctuations.

Further, we have, till now, only considered smooth
fluctuations of the angle field. While we have already
demonstrated that the chiral hexatic only has short-range
order, topological defects, which in a hexatic predomi-
nantly have charges ±1/6, can still have significant im-
pact on the phase behaviour. We show that chirality
leads to a spontaneous rotation of a single defect with
an angular speed ∝ ζc even when a defect-free hexatic
does not rotate [30]. The λ term in (8) also leads to a
qualitative modification of the far field structure of the
angle-field due to a defect – unlike in achiral hexatics,
in which the angular far-field is independent of the dis-
tance from the defect core, in chiral active hexatics the
angle field is an explicit function of the distance from
the core-radius. This is similar to defect structures in
compact KPZ equation [33] and spiral waves in com-
plex Ginzburg-Landau equation. Furthermore, activity
also qualitatively modifies the interaction between two
defects. In particular, we show in [30] that the inter-

actions between defects are non-mutual – the strength
of attractive or repulsive force exerted on a +1/6 de-
fect by a −1/6 defect is different from the force exerted
by a +1/6 defect on a −1/6 – implying that though a
single +1/6 or −1/6 defect doesn’t self propel, a ±1/6
pair, maintained at a fixed separation, does (see Fig. 3).
Furthermore, [33] demonstrated that the two-defect in-
teraction potential in the absence of non-mutual inter-
action changes sign for Ld ∼ e2K̄/λ implying that de-
fects unbind beyond this scale. In chiral active hexatics,
this is complicated by the non-mutuality of interaction
but we find that the sign of the interaction between a
±1/6 pair changes beyond a critical distance within a
perturbative treatment to O(λ2). However, non-mutual
interactions between defects complicates the many-body
physics, and opens up possibilities for novel behaviours,
such as charge-separation, which we will explore in a fu-
ture publication.

We now discuss how a chiral hexatic phase may arise,
at least in a small enough system (since there is no chiral
active hexatic in the thermodynamic limit, at large scales
a solid must melt directly to a liquid), from the melting of
a chiral solid. In the crystalline phase, which breaks both
rotation and translation symmetries, the bond-angle field
is slaved to the displacement field, which we denote by
u(x, t), as

εijθ =
1

2
(∂iuj − ∂jui) = W a

ij , (10)

where Wa is the antisymmetric part of the displacement
gradient tensor which denotes a rotation of the crys-
tal structure. Inserting this form of θ into the active
forces −ζẑ × ∇θ and −ζcẑ × (ẑ × ∇)θ in (3), we find
that these correspond to the active forces ζ∇ ·Wa and
−ζc∇ · (ε ·Wa) in the solid phase which were ignored in
[15]. We therefore construct a complete theory of active
chiral solids, including all active forces in [30] and formu-
late a phenomenological theory of dislocation unbinding
which yields the hydrodynamic equations of the chiral
active hexatic that we have discussed in this paper. This
connects the phenomenological parameters in (1) and (3)
with those in the theory of the solid.

We close by discussing the generality of our results
and its experimental implications. First, though we con-
sidered a chiral hexatic on a substrate, our primary re-
sults, giant number fluctuations in a non-rotating hex-
atic, waves if the rotation rate of the ordered phase de-
pends on the density, destruction of quasi-long-range or-
der due to nonlinearities all remain valid even for a hex-
atic phase formed by a suspension of active particles in an
incompressible momentum conserved fluids with∇·v = 0
[30]. Next, though our results are strictly applicable for
an inherently chiral system, they may have relevance for
microscopically achiral systems, in which chiral symme-
try is broken spontaneously. We outline two possibilities
for breaking of chiral symmetry in achiral active hexat-
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ics. First is a hexatic structure formed by active Brown-
ian particles (ABPs) in which there is an explicit aligning
interaction between the polar vectors (which determine
the motility direction) of the ABPs [35, 36]. In these
systems, while the arrangement of the particles them-
selves are hexatic, polar vectors form aligned domains
whose configuration can lead to a chiral rotation of the
hexatic structure with the sense of rotation depending
on the detailed configuration of the domains. The sec-
ond arises in hexatics formed by ABPs in which there
is no explicit alignment interaction between the internal
polar vectors [16, 35, 37]. Even here, however, the po-
lar vectors have an interaction with the structure which
can be non-mutual – the polar vectors may try to align
with the structure while the structure anti-aligns with
the polar vectors. This may lead to a spontaneous chi-
ral symmetry-broken state in which the structure rotates
at a constant rate [38]. Our theory should describe the
hydrodynamic fluctuations of both these states. We also
discuss the potential implication of the nonlinear desta-
bilisation and non-mutual defect interactions uncovered
here for chiral phase with lower angular symmetry such as
nematics in the supplement [30]. Our results also have
implications for multiple experimental systems such as
active, chiral vortex lattice phases in motor-microtubule
systems [39] and in fast-moving bacteria [21]. Epithelial
tissues also often have a hexagonal structure [17, 18, 40]
and intrinsic chirality have been observed in multiple cel-
lular systems [19], raising the possibility that certain tis-
sues may be described as active chiral hexatics and our
result for giant number fluctuations for non-rotating sys-
tems may be tested there at timescales at which cellular
birth and death are unimportant. Recently, cells in an
isotropically confined epithelial sheet were shown to all
spontaneously rotate in the same sense [41]; the predicted
density-orientation wave may be observed in this system.
Chiral hexagonally ordered phases have also been ob-
served in simulations [42], [43, 44] and our predictions
regarding the hexatic phase should be verifiable there.

A.M. acknowledges illuminating discussions with De-
barghya Bannerjee, Cesare Nardini, Sriram Ramaswamy
and Vincenzo Vitelli.
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