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The kinetics of the assembly of semiflexible filaments through end-to-end annealing is key to the
structure of the cytoskeleton, but is not understood. We analyze this problem through scaling theory and
simulations, and uncover a regime where filaments’ ends find each other through bending fluctuations
without the need for the whole filament to diffuse. This results in a very substantial speedup of assembly in
physiological regimes, and could help with understanding the dynamics of actin and intermediate filaments
in biological processes such as wound healing and cell division.
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The self-assembly of cytoskeletal filaments is crucial for
many cellular functions, including wound healing [1] and
cell division [2]. The growth kinetics of these filaments
strongly influences the morphology of the networks they
form, from bundled to entangled structures [3–7]. Unlike
the well-understood actin filaments and microtubules [8],
intermediate filaments of vimentin and keratin crucial for
cell shape and mechanical integrity [9] mainly grow by
end-to-end annealing [10–14]. This mechanism is also at
work in wormlike micelles [15], DNA [16], and some
synthetic polymers [17], and plays a secondary role in the
assembly of actin [18,19] and microtubules [20]. As
filaments elongate by end-to-end annealing, their diffusion
becomes slower due to an increased viscous drag. The time
needed to find other reaction partners then increases, giving
rise to diffusion-limited growth [21]. Theoretical models
have been proposed to describe the dependence of the
polymer growth kinetics on physical properties such as
length, flexibility, and concentration [22–28]. Many have,
however, employed the Gaussian chain model, which
provides a poor description of cytoskeletal filaments [8].
Here, we instead tackle the more general case of semi-

flexible filaments, and uncover a new assembly regime
driven by transverse fluctuations. While rigid rods react
slowly due to the need of mobilizing the center of mass
[Fig. 1(a)], these fluctuations speed up the search of
bonding partners, leading to faster assembly [Fig. 1(b)].
We first describe the growth regimes successively encoun-
tered by a growing filament, then validate the resulting
scaling laws using Brownian dynamics simulations.
We model the annealing of semiflexible filaments as an

irreversible reaction whereby an i mer and a j mer form an
iþ j mer (Fig. 1). The reaction rate constant Ki;j generi-
cally depends on the lengths of the reacting filaments [21].
Filaments undergo annealing via reactive sites (monomers)

located at their ends that bind immediately upon contact,
and we assume the system is dilute enough to ignore steric
constraints, e.g., entanglements [29,30]. We also neglect
hydrodynamic interactions, and describe filament dynam-
ics with the Rouse model [29]. Finally, our scaling
discussion ignores numerical prefactors as well as length
polydispersity, and thus considers a single typical contour
length L and reaction rate constant KðLÞ.
The annealing rate of a collection of filaments of length

L stems from the dynamics of their reaction sites [22–27].
To describe it, we assume a scaling form xðtÞ ∝ tα for the
root-mean-square displacement of one such site. For
normal diffusion, α ¼ 1=2, while α ¼ 1=4 at short times
in a long Gaussian polymer [29]. If α > 1=d, with d the
dimension of space, the monomer explores space in a
noncompact manner. This means that, if we approximate
this exploration as a discrete process in which a site of
volume bd (with b the monomer size) is visited at each step,
the number of sites visited at time t is much smaller than
½xðtÞ=b�d. We assume that the reactants are uniformly
distributed before the reaction and that the reaction takes

(a) (b)

FIG. 1. Rigid filaments (a) assemble by displacing their center
of mass, which results in a reaction rate K ∝ L−1, with L the
mean contour length, and slow growth (L ∝ t1=2). Here, we show
that semiflexible filaments (b) take advantage of transverse
fluctuations to quickly join their ends, resulting in a constant
reaction rate (K ∝ L0) and faster growth (L ∝ t).
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place immediately when the reactants come within a
distance ≈b. Then, in d ¼ 3 [26]

K−1 ≈
Z

∞

τb

x−3ðtÞdt; ð1Þ

where τb is the time a monomer takes to move over a
distance b. In the regimes considered below, this results in
KðLÞ ∝ L−λ, where the exponent λ ≥ 0 depends on the
physical process underlying the motion of the reactive
sites. The number density of filaments ν evolves as
ν̇ ¼ −KðLÞν2. Since ν ¼ cb=L, with c the total monomer
density, this implies LðtÞ ∝ t1=ð1þλÞ [31–33].
Starting from a solution of monomers, filaments are

initially much shorter than the persistence length Lp [34],
and thus behave as rigid rods (Lp ¼ ∞). Their ends
undergo diffusive dynamics, i.e., x2ðtÞ ≈Dt where D is
the center-of-mass diffusion coefficient of the filament. If
each monomer is subjected to a viscous friction ζ, we have
D ¼ kBTb=ζL [29]. Equation (1) with τb ≈ b2=D thus
yields K ≈ b3τ−1b ≈ kBTb2=ζL ≈ b3τ−1ðb=LÞ, where τ ≈
b2ζ=kBT is the time a free monomer takes to move by
b. Since LðtÞ ∝ t1=ð1þλÞ, the filament length reads

LðtÞ=b ≈ ðcb3t=τÞ1=2: ð2Þ

Thus, both center-of-mass diffusion and filament growth
slow down over time.
As the filaments elongate, bending fluctuations become

relevant even as L ≪ Lp. Indeed, the short-time dynamics
of the reactive sites then becomes dominated by bending
modes. Their root-mean-square displacement thus grows
with time predominantly in the direction perpendicular to
the local filament contour [34–38]. This results in a short-
time subdiffusive regime, xðtÞ ∝ t3=8. This lasts until the
time τf ≈ τðL4=Lpb3Þ required to relax the longest-wave-
length bending mode of the filament. Subsequently, center-
of-mass diffusion dominates filament motion. The typical
monomer displacement thus reads

xðtÞ ≈
(
ðb9=LpÞ1=8ðt=τÞ3=8 τ ≲ t≲ τf

ðb3=LÞ1=2ðt=τÞ1=2 t≳ τf:
ð3Þ

In the regime considered here, the monomer displacement
time τb is computed from the short-time regime of Eq. (3),
yielding τb ≈ τðLp=bÞ1=3. If the total duration τf of the
bending-fluctuations-dominated regime is much longer
than the monomer displacement time τb, this regime
dominates the integral of Eq. (1), and therefore the reaction
rate. We may equivalently require L ≫ L� ≈ bðLp=bÞ1=3.
Since LðtÞ ∝ t1=ð1þλÞ, this yields

K ≈ b3τ−1b ≈ b3τ−1ðLp=bÞ−1=3 ðfor L ≫ L�Þ: ð4Þ

Thus, for filaments longer than L�, the reaction rate is
independent of L, as also found for first-passage problems
involving semiflexible filaments [39,40]. A scaling argu-
ment leading directly to Eq. (4) is presented in the
Supplemental Material [41]. As illustrated in Fig. 1(b),
transverse fluctuations then allow the reactive sites to
“find” each other without center-of-mass motion. As the
filaments elongate, their center-of-mass motion slows
down, but the short-time dynamics of the reaction sites
remains the same. This accounts for the independence of K
on L and implies a constant growth speed:

LðtÞ=b ≈ cb3t=τb: ð5Þ

Mathematically, this stems from the τb ≲ t≲ τf time
domain dominating the integral of Eq. (1) when
L ≫ L�. Equation (5) is valid for L ≫ L�, while shorter
filaments behave as rigid rods [Eq. (2)]. At the crossover
between these two regimes, filaments have a length
L� ≪ Lp, meaning that bending fluctuations overtake
center-of-mass diffusion before the filaments become fully
flexible. The crossover time reads t� ¼ τðcb3Þ−1ðLp=bÞ2=3.
As the filaments eventually grow much longer than the

persistence length (L ≫ Lp), the short-time dynamics of
the reactive sites is still dominated by the bending modes
and independent of L [Eq. (3)]. At the time τ̃f ¼ τðLp=bÞ3,
the monomer displacement xðtÞ becomes of order Lp. For
later times, the filament behaves as a Gaussian chain
[37,38] governed by Rouse relaxation modes [29].
Segments of the filaments with length ≈Lp then diffuse
while elastically coupled with the neighboring segments,
leading to a slow, subdiffusive regime xðtÞ ∝ t1=4. This lasts
up to the Rouse relaxation time τR ¼ τðLpL2=b3Þ.
Subsequently, the segments of the chain essentially move
together and their displacement is again dominated by
center-of-mass diffusion. Combining these three regimes
(bending fluctuations, Rouse modes, and center-of-mass
diffusion), we write the following for L ≫ Lp:

xðtÞ ≈

8>><
>>:

ðb9=LpÞ1=8ðt=τÞ3=8 τ ≲ t≲ τ̃f

Lpðt=τ̃fÞ1=4 τ̃f ≲ t≲ τR

ðDtÞ1=2 t≳ τR;

ð6Þ

where DðLÞ is the diffusion constant of the “rigid rod”
regime. The integral in Eq. (1) can now be split into three
pieces, the last (t≳ τR) of which is negligible, yielding

K−1 ≈ τb−3ðLp=bÞ1=3
�
1þ ð3=4ÞðL=L��Þ1=2�; ð7Þ

where L�� ¼ LpðLp=bÞ2=3 and where each term of the sum
stems from one of the remaining pieces of the integral.
When L ≫ L��, the reaction rate thus crosses over from the
bending-fluctuations-dominated regime of Eq. (4) to a
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Gaussian regime with K ≈ b3τ−1ðL=LpÞ−1=2. In this
regime, the mean contour length increases as

LðtÞ=L� ≈ ðcb3t=τÞ2=3: ð8Þ

The crossover time associated with L�� is t�� ¼
τðcb3Þ−1ðLp=bÞ2. This last regime can be understood as
follows: after the transverse fluctuations have relaxed
(t > τ̃f), the monomers perform a compact exploration
of space (i.e., their trajectories densely fill space) and
quickly explore the region of size R ≈ L1=2 occupied by the
filaments. The filaments then behave as diffusing reactive
spheres with radius R ∝ L1=2 and diffusion coefficient
D ∝ L−1. Their reaction rate then obeys the well-known
Smoluchowski formula [47], K ¼ 4πDR ∝ L−1=2, which
results in L ∝ t2=3 [26]. Equation (8) is valid up to
L ¼ L3

p=b2, after which the filament starts to feel its
own excluded volume and its dynamics changes [38].
Our scaling results rest on twomain assumptions: that the

system is characterized by a single typical contour length L
and reaction rate constantKðLÞ, and that steric effects can be
neglected. To test the robustness of our predictions when
these assumptions are relaxed, we run Brownian dynamics
simulations of semiflexible polymers undergoing irrevers-
ible end-to-end annealing. The polymers are purely repul-
sive Lennard-Jones beads of diameter σ ¼ 1 connected
by finite-extensible nonlinear elastic springs [48]. The
Lennard-Jones interaction energy is ϵ ¼ 1. The system size
is N ¼ 8000 monomers, but we also simulated smaller
systems (N ¼ 1000, 4096) to check that there are no
significant finite-size effects (Supplemental Material). To
simulate semiflexible filaments, we impose an angular
potential [49] UangðθÞ ¼ εb½1 − cosðθÞ� to bonded triplets,
where θ is the triplet angle and εb the bending stiffness. For
stiff enough filaments Lp ¼ εb=kBT, which we validate by
analyzing the bond orientation correlation function
(Supplemental Material) and use throughout. We consi-
der Lp values ranging between 10 [Fig. 2(a)] and 5 × 103

[Fig. 2(b)] (filaments with Lp < 10 tend to form spurious
loops [50]). To test the validity of our predictions as the
concentration c is increased from the dilute to the concen-
trated regime, we consider c ¼ 10−3, 10−2, and 10−1. We
note that these values encompass typical ones found for
vimentin intermediate filaments in living cells, which are
between 0.1 and 1 mg=ml, corresponding to c roughly
between 10−2 and 10−1 [51,52].We carry out the simulations
using LAMMPS [53], and thermalize the system to an average
temperature kBT ¼ 1.0 through a Langevin thermostat [54].
A high monomer friction is imposed in order to simulate
Brownian dynamics. To simulate filament annealing, each
time two reactive sites come into contact a finite-extensible
nonlinear elastic bond is created between them provided that
the angle θ between prospective bonded triplets is larger than
θmin ¼ 160° to prevent excessive accumulation of bending
energies upon binding. Eachmonomer can form at most two
bonds, so that when polymers are formed, only their ends act
as reactive sites. See also the Supplemental Material.
To assess the validity of our filament annealing dynamics

dominated by diffusion and bending fluctuations, we
monitor the mean filament contour length LðtÞ and com-
pare it to our scaling predictions. We start from a monomer
solution, implying Lð0Þ ¼ 1, and thus monitor LðtÞ − 1. In
Fig. 3(a) we show LðtÞ for systems of polymers with
monomer concentration c ¼ 10−2 and 10 ≤ Lp ≤ 5 × 103

(solid lines). At short times, namely for 1≲ L − 1≲ 3, we
observe a transient regime of sublinear growth LðtÞ ∝ tβ

with β ≃ 0.4. We attribute this behavior to slower filament
relaxation following binding in the presence of excluded
volume interactions (Supplemental Material). After this
transient, growth obeys a power law LðtÞ ∝ tβ where β

(a) (b)

FIG. 2. Simulation snapshots (N ¼ 8000 beads) of systems
with the same mean contour length L and concentration
(c ¼ 10−2) but with different persistence lengths Lp putting
them in the fluctuations-driven (a) and rigid-rod-like (b) regimes.
Shorter filaments are colored darker than longer ones.
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FIG. 3. Mean contour length as a function of time for excluded
volume and phantom filaments with different persistence
lengths Lp and concentration c ¼ 10−2. (a) Excluded volume.
(b) Phantom. Dashed line: Lp ¼ 5000 with excluded volume
interactions [same as in panel (a), shown for comparison]. For
both systems [(a) and (b)], the long-time behavior of LðtÞ follows
our predictions for the rigid rods (slope 1=2) and fluctuations-
driven (slope 1) regimes, depending on Lp.
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strongly depends on Lp. For large Lp, we observe β ¼ 1=2,
as predicted for rigid rods. As Lp is decreased, this
exponent increases and approaches 1 (linear growth) as
expected for the fluctuations-dominated regime.
As filaments elongate, many-body excluded volume

interactions become more important and hinder diffusion
[29]. This may drastically slow down the motion of the
reactive sites, and could conceivably contribute to the
observed crossover from sublinear (∝ t1=2) to linear growth
in Fig. 3(a). To prove that this crossover is instead due to
the switching between a rigid rod regime and a fluctua-
tions-dominated one, we simulate a system of “phantom”
polymers [Fig. 3(b)]. There, the excluded volume inter-
actions between nonbonded neighbors are removed so that
distinct filaments can freely cross each other. The crossover
from sublinear to linear growth is preserved in this system,
implying that it is not caused by steric effects. There are,
however, two differences with Fig. 3(a). First, at very early
times L increases approximately as t1=2 instead of t0.4,
suggesting that the transient regime discussed above may
be caused by excluded volume effects. Secondly, the
phantom polymers display a faster growth (1.5 to 2 times
faster for c ¼ 10−2) both in the sublinear and in the linear
regime [see dashed line in Fig. 3(b). To explain this second
effect, one could speculate that excluded volume inter-
actions slow down the movement of reactive sites and thus
reduce the prefactor in the xðtÞ ∝ t3=8 relation. We show,
however, that this is not the case by directly monitoring the
mean-squared displacement of the end monomers of
filaments that do not undergo annealing (Supplemental
Material). Additionally, we also show that this effect is not
due to significant differences in the filament length dis-
tribution for phantom and excluded volume filaments
(Supplemental Material). This analysis also reveals that
filaments that are either much shorter or much longer than
L are rare, justifying a posteriori our scaling assumption of
a single typical length governing the annealing kinetics. We
instead attribute the slower assembly in nonphantom
systems to the inaccessibility of some potential reaction
partners due to steric hindrance [5,55].
Finally, to confirm that the main assembly mechanism

switches from center-of-mass diffusion to bending fluctua-
tions as filaments lengthen, we plot ðL − 1Þ=L� against
t=t�, where L� and t� are respectively the crossover length
and time between the two regimes. Our model predicts that
the data should collapse onto the same master curve, with
the crossover taking place at t=t� ≈ 1, ðL − 1Þ=L� ≈ 1. We
show that this is indeed the case in Fig. 4, although the
collapse fails for filaments smaller than a dimer (L≲ 2),
where the reaction rate is K ≈ b3=τ as expected for single
monomers [56]. The collapse there is further distorted by
dimerization events occurring within the first simulation
time step in the denser regimes (c≳ 10−2). Following this
initial regime (shaded area in Fig. 4), the data collapse
on a master curve that displays a crossover between two

power-law regimes, confirming our theoretical predictions
for both excluded volume and phantom systems. Indeed,
we observe a regime with slope 1=2 (rigid rod regime,
dotted line), followed by a rather broad crossover to a linear
one (fluctuations-driven regime, solid line). As an addi-
tional confirmation of the existence of this crossover, we
also measure K directly from the reaction of same-length
filaments, finding a good agreement with the scaling
prediction (Supplemental Material). While we do not
observe the Gaussian regime in our simulations, we recall
that our theory predicts its onset only in very long filaments
L ≫ L�� ∝ L5=3

p . We thus estimate L�� ≈ 46 for our small-
est values of Lp, which may put this regime out of reach of
our current simulations once geometrical prefactors are
taken into account.
Overall, the fluctuations-driven regime predicted in this

work allows for much faster growth of annealing semi-
flexible filaments compared to rigid rods. This mechanism
is likely relevant in the cell cytoskeleton. In vimentin
intermediate filaments with Lp ≃ 1 μm and b ≃ 50 nm
[57,58], we expect our regime to dominate assembly for
filament lengths comprised between L� ≃ 140 nm
and L�� ≃ 7.4 μm. This is consistent with the typical
lengths between 200 nm and 10 μm observed in cells
[59,60]. Estimating the resulting speedup in assembly as
the ratioKsemiflex=Krigid ≈ ðL=bÞðLp=bÞ−1=3, whereKrigid ≈
kBTb2=ζL and Ksemiflex is given by Eq. (4) yields a 40-fold
speedup for a 5 μm vimentin filament. Actin filaments,
which display significant end-to-end annealing under
some conditions [18,19], may be similarly affected.
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FIG. 4. Rescaled mean contour length as a function of time for
excluded volume and phantom filaments with different persist-
ence lengths Lp and concentrations c ¼ 10−3, 10−2, and 10−1.
Here, L� ¼ bðLp=bÞ1=3 and t� ¼ τðcb3Þ−1ðLp=bÞ2=3. (a) Exclu-
ded volume. (b) Phantom. For both systems [(a) and (b)], the data
collapse on a single master curve, in agreement with the
theoretical scaling regimes. The density-dependent behavior at
small t (shaded area) is due to the rapid formation of a small
number of bonds between nearby monomers at the very begin-
ning of the simulation.
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There, Lp ≃ 18 μm and b ≃ 5.5 nm [8] and so L� ≃ 82 nm
and L�� ≃ 4.0 mm, whereas the in vivo filament lengths are
comprised between 100 nm and a few microns [61]. For a
5 μm actin filament, we estimate a speedup ratio of 60. Our
analysis shows that transverse fluctuations dominate the
assembly up to values of L�� much longer than the filament
persistence length. This implies that the long-length
Gaussian regime should very rarely, if ever, be observed.
Our findings moreover shed new light on experimental
observations of rigid-rod-like assembly kinetics (K ∝ L−1)
in concentrated actin [19] and vimentin [55] undergoing
annealing in vitro. These observations indicate that other
phenomena such as lateral interactions (e.g., bundling [3–
6]), may play a role in these experiments and effectively
increase the rigidity of the filaments.
Our numerical simulations reveal that our mechanism

does not give rise to widespread filament alignment, and
that it is surprisingly robust to molecular crowding and
excluded volume interactions. One could indeed naively
expect excluded volume effects to significantly slow down
network assembly when L becomes comparable with the
mesh size ξ ≈ ðcbÞ−1=2, as would be the case for diffusion
in a suspension of rigid rods [29]. For a filament volume
fraction c ¼ 10−2 (c ¼ 10−1), this would lead to significant
excluded volume effects for filaments comprising more
than ≈10 (3) monomers. By contrast, our theory accurately
describes the simulated assembly dynamics well beyond
these thresholds. This suggests that small-scale end fluc-
tuations remain unhindered by neighboring filaments even
in situations where the filament center-of-mass diffusion is
largely inhibited, allowing the filaments to keep on anne-
aling. These unhindered fluctuations are evidenced by the
preservation of the xðtÞ ∝ t3=8 scaling for the filament end
displacement even in the presence of excluded volume
interactions [30] (Supplemental Material). This implies that
filament assembly continues unabated into the L > ξ
“entangled network” regime of the semiflexible filament
solution, where its short-term elastic modulus and its
viscoelastic relaxation time both quickly increase with
increasing filament length [62]. In cells, typical values
of ξ range roughly between 100 and 500 nm [51,52]. This
corresponds to reduced concentrations c between 10−2 and
0.25 for vimentin (b ≃ 50 nm). This is enough to strongly
suppress the filaments’ center-of-mass diffusion but not our
fluctuations-driven mechanism, implying even larger
speedup ratios than estimated above. The robustness of
our assembly mechanism at high concentrations also
justifies a posteriori neglecting hydrodynamic interactions,
as these will be partially screened in concentrated systems
[29]. Moreover, even in the dilute regime these interactions
only lead to a logarithmic correction to the xðtÞ ∝ t3=8

scaling [34,38] and we thus do not expect them to
significantly alter our predictions. Finally, in our simula-
tions we have considered irreversible bonds and a finite
monomer supply. However, knowledge of the annealing

rate allows one in principle to describe the assembly
kinetics also in the presence of severing [63] (if the severing
mechanism is known) or equilibrium fragmentation [55].
Moreover, our assembly mechanism is robust with respect
to the replenishment of monomers, which can be a relevant
process in living cells (Supplemental Material).
Our estimates thus suggest that the mechanism described

here may be crucial in allowing the cell to quickly assemble
cytoskeletal structures in response to external stimuli.
Beyond questions of timescales, these considerations
may shift the balance between filament growth and, e.g.,
bundling or the buildup of entanglements during non-
equilibrium cytoskeletal self-assembly. Indeed, It has been
shown both in actin [5,64] and intermediate filaments [3,6]
that differences in filament growth kinetics can lead to
networks with markedly different mesh size, bundle density
and diameter, and mechanical properties. Thus, the mecha-
nism of growth kinetics is likely to have a profound impact
on dictating the very structure and mechanics of cytoske-
letal networks.
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