
Hydrodynamics of a superfluid

2020-2021 Statistical Mechanics exam – ICFP M2 – Soft Matter & Biophysics track

The use of written documents as well as electronic devices including cell phones
and pocket calculators is prohibited. Write your answers to each problem on
separate sheets of papers, as they will be corrected by different people. Vectors are
denoted in a bold font in the following.

The concepts of generalized hydrodynamics constrain the behavior of large-scale flows in
many systems, including some where quantum effects play a significant role. In this problem,
we derive the hydrodynamics equations for superfluid helium II. Interestingly, this discussion
requires almost no knowledge of quantum mechanics, and can be conducted simply by accept-
ing that the quantum phase of a Bose liquid plays the role of a broken symmetry variable,
and that the gradient of this phase is proportional to the velocity of the superfluid flow which
drives mass and momentum transport.

At low temperatures helium II can be described as a superfluid “background” that is
in its quantum ground state, within which quantized excitations (mainly phonons at low
temperature) propagate. The excitations can be thought of as a classical gas of particles that
live within the superfluid. It is therefore reasonable, if not completely accurate, to describe
helium II as a mixture of two fluids: a superfluid fraction, and a “normal fluid” made of
quasi-particles that behave as if they had a mass.

To familiarize ourselves with fluid mixtures, in Sec. 1 we first derive a system of simplified
hydrodynamic equations for a mixture of two classical fluids. In Sec. 2, we contrast these
results with those obtained by introducing the aforementioned broken symmetry variable to
describe helium II [1, 2, 3]. Finally in Sec. 3, we discuss the resulting superfluid hydrodynamic
equations to two geometries to demonstrate some of the peculiarities pertaining to its flows.

All fluids considered here are isotropic, achiral and translationally invariant. The sections
are presented in order of increasing difficulty. While Sec. 2 is formally independent from Sec. 1,
a good understanding of the latter is very helpful in solving the former. Both section lay the
necessary foundation to tackle Sec. 3.

1 Classical two-fluid system

We consider a three-dimensional fluid made of two components a and b. For simplicity we
consider their respective mass densities ρa and ρb as constant and homogeneous in space. This
may stem from a mechanism whereby the teo components are locally produced and evacuated,
as in a Malthusian flock, or simply because of their individual incompressibility. We denote
ρ = ρa+ρb in the following, and the temperature is also held constant throughout the system.
We assume that the local state of the system is well described by the momentum densities of
the two components, respectively denoted by ga(r, t) and gb(r, t), where r denotes the position
and t denotes time. The free energy density of the system consequently reads

f =
(ga)2

2ρa
+

(gb)2

2ρb
, (1)



which is simply the sum of the kinetic energy densities of the a and b fractions.
In the following we describe our fluid with two fields, namely g(r, t) = ga+gb and w(r, t) =

gb/ρb − ga/ρa.

1.1 What is the physical meaning of g? Why is it a hydrodynamic variable?

1.2 Propose a physical interpretation of w.

1.3 What are the signatures of g and w under time reversal?

1.4 Write the thermodynamic force Ag conjugate to g defined through

Agi =
∂f

∂gi

∣∣∣∣
w

(2)

as a function of g, w. When performing this calculation do pay attention to what is
being held constant in the derivative.

1.5 What is the physical interpretation of Ag?

1.6 Write the thermodynamic force Aw conjugate to w as a function of g, w.

1.7 The general form of the evolution equation for w reads

∂tw = Φ(Ag,Aw). (3)

The function Φ however takes a simpler form in a Galilean invariant system. Remem-
bering that in a frame moving with constant velocity U relative to the lab frame, g is
transformed to g′ = g − ρU, how is w transformed under the same Galilean transfor-
mation?

1.8 How is the time derivative ∂t′ of the new reference frame related to the old?

1.9 Galilean invariance demands that

∂t′w
′ = Φ(Ag ′,Aw ′), (4)

where the function Φ is the same as in Eq. (3). Combine Eqs. (3) and (4) to show that
to zeroth order in gradient Φ depends on only one of its arguments.

1.10 Give a brief physical motivation for a linearized form

∂tw = −αA?, (5)

where A? is the argument that Φ does depend on.

1.11 Give a physical interpretation for the proportionality coefficient α. What is its sign and
why?

1.12 Is w a hydrodynamic variable and why?

1.13 The conservation equation for g is

∂tgi = −∇jΠij . (6)

The momentum current tensor Π is closely related to a quantity routinely used in me-
chanics and hydrodynamics. Name this quantity and write down the relation.



1.14 This tensor can be decomposed into two parts as Πij = Πreac
ij + Πdiss

ij . One of these parts
is equal to gigj/ρ for a “Mathusian” fluid. Which of the two is it and how do you know?

1.15 The other part of the tensor can be expanded as

−γijkAgk − γ̄ijkl∇kA
g
l . (7)

Pursuant to rotational symmetry, the most general possible forms of the two constant
tensors present in this expansion are

γijk = constant× εijk (8a)

γ̄ijkl = constant× δijδkl + constant× δikδjl + constant× δilδjk, (8b)

where ε is the completely antisymmetic tensor, which has ε123 = 1 and is antisymmetic
under any exchange of indices, and δ is the Kroenecker symbol. In the following feel
free to give reasonable names to the constants featured in these expressions. Why is Aw

absent from the expansion of Eq. (7)?

1.16 In what small parameter(s) is the expansion of Eq. (7) made?

1.17 Use a symmetry of the fluid to show that one of the terms of Eq. (7) vanishes.

1.18 In a fluid that is incompressible the reactive part of the tensor Πij is augmented by a
term Pδij where P is a Lagrange multiplier that enforces the incompressibility condition
∇igi = 0. In such a system, write the evolution equation for v = g/ρ, the center-of-mass
velocity of the fluid.

1.19 Which equation characteristic of the physics of a single fluid do you recognize?

1.20 Explain physically why this two-fluid system is described by a single-fluid equation.

2 Hydrodynamics of a superfluid with constant densities

We describe our superfluid as a mixture of two fluids each with a constant mass density, which
we respectively denote as ρn (normal fluid fraction) and ρs (superfluid fraction). The two
fractions have variable momentum densities gn(r, t) and gs(r, t), both of which are odd under
time reversal symmetry, and the temperature is assumed constant1. We moreover define the
total mass density ρ = ρn+ρs (which is constant), the total momentum density g(r, t) = gn+gs

as well as the normal and superfluid velocities vn(r, t) = gn/ρn and vs(r, t) = gs/ρs. The main
input we need from quantum mechanics is the following: the superfluid fraction of the fluid
is characterized by a quantum phase φ(r, t). This phase plays the role of a broken symmetry
variable, which dictates the local superfluid velocity through the relation vs = ∇φ (here we
omit a proportionality coefficient ~/m without any consequence for our discussion). This
constrains the superfluid flow to be a potential flow (i.e., ∇×vs = 0), a condition responsible
for much of its original behavior.

In the following we develop a hydrodynamic description based on the conserved quantity
g and the broken symmetry variable φ. Microscopic considerations (see chapter 3 of Ref. [4])
dictate a free energy functional

F = E − TS =

∫ [
ρ+ ρn

2
(∇φ)2 − (gn)2

2ρn

]
d3r, (9)

where the unusual sign in front of the second term of the integrand has an entropic origin.

1The following also implicitly assumes that the specific volumes of the superfluid and normal fractions are
identical, but you do not need to worry about this to solve the problem.



2.1 Compute the thermodynamic force Ag conjugate to the total momentum density of the
fluid as a function of vn and vs. Again, pay attention to what is being held constant.

2.2 Show that the thermodynamic force

Aφ(r) =
δF

δφ(r)

∣∣∣∣
g

(10)

conjugate to the quantum phase is a linear combination of ∇ · vs and ∇ · vn, and give
the proportionality coefficients. Be mindful of the functional derivative in its definition.

2.3 The most general form for the evolution equation of φ is

∂tφ = Ψ(Ag, Aφ) = Ψreac(Ag, Aφ) + Ψdiss(Ag, Aφ). (11)

Write Ψdiss as the most general possible expansion to first order in the thermodynamic
forces Ag, Aφ and to first order in gradient. To determine the order of the different
terms, consider that vn and vs are of the same order, implying that both ∇vn and ∇vs
terms are to be regarded as first order in gradient. This expansion involves unknown
tensors of phenomenological coefficients of ranks up to two.

2.4 Invoke rotational symmetry (no detailed demonstration needed) to simplify this depen-
dence down to the point where it involves only two scalar phenomenological coefficients
γφφ and γ̄φg. Note that the quantum phase φ is unchanged by a spatial rotation.

2.5 How does the expression that you derived for Ψdiss transform under a Galilean change
of frame? You may use the fact that the velocities vn and vs transform in the usual
way, namely vx′ = vx −U with x ∈ {n, s}.

2.6 The reactive term in Eq. (11) is determined by Galilean invariance. Using the transfor-
mation formula for vs and the fact that vs = ∇φ, show that

φ′ = φ+ f(r) + g(t), (12)

where you will specify the function f(r) but leave the integration constant g(t) unknown
for now.

2.7 We propose the form
Ψreac = λ(vs)2. (13)

Show that with the right choices of λ and g(t) Eq. (13) ensures that Eq. (11) is Galilean
invariant. What is the required value of λ?

2.8 What is the required form of g(t)?

2.9 Use Eq. (11) to show that

∂tv
s − λ∇(vs)2 = µs∇(∇ · vs) + µn∇(∇ · vn). (14)

Express the viscosity-like constants µn and µs as functions of γφφ and γ̄φg.

2.10 The conservation equation for g is identical to Eq. (6), although the tensors Πreac
ij and

Πdiss
ij are now functions of the forces associated with the superfluid. Write down Πdiss

ij

as the most general expansion in terms of the forces Ag, Aφ to the same order in
gradient and used for the expansion of Ψdiss. This involves tensors of phenomenological
coefficients up to rank 4.



2.11 Use inversion symmetry r→ −r to eliminate one of the terms.

2.12 Use rotational invariance and the expressions of Eq. (8) to whittle down the crowd of
remaining phenomenological coefficients to just four scalars. Remember that the only
isotropic tensor of rank two in three dimensions is the unit tensor.

2.13 Using Πreac
ij = gigj/ρ + Pδij , where the overall pressure P is a Lagrange multiplier

enforcing the overall incompressibility condition, show that

∂gi +∇j
gigj
ρ

= −∇iP + ηnshear∆v
n
i + η̃nbulk∇i(∇ · vn) + η̃sbulk∇i(∇ · vs) (15)

Give the expressions of the three independent viscosity-like constants ηnshear, η̃
n
bulk and

η̃sbulk.

2.14 Drop all terms of order (vx)2 for simplicity and write down the full evolution equation for
vn as a function of vn and vs. This should look nice once you define ηnbulk = η̃nbulk−ρsµn
and ηsbulk = η̃nbulk − ρsµs.

2.15 What is the name of the physical relationship that relates µn and ηsbulk? What is the
main assumption underlying it?

2.16 What is the mathematical expression of this relation?

2.17 In contrast with the situation of Sec. 1, the hydrodynamic equations for the superfluid
cannot be written down as those of a single fluid. By taking a look at the difference
between the evolution equations derived for w and vs, explain this difference.

2.18 Why is there no shear viscosity-like coefficient for the superfluid flow?

3 Superfluid flow

Here we consider the steady-state flow of the two fluids studied above along the direction x
between two parallel plates located in z = ±d/2. Make sure you are confident in the results
of the previous sections before tackling this one.

3.1 For the classical mixture studied in Sec. 1, what relation exists between the velocities
va and vb of the two fluids as long as d is larger than any molecular length scale?

3.2 Give the steady-state flow profile of the classical fluid mixture for a constant pressure
gradient ∇P = −ax̂ assuming no-slip boundary conditions at the wall. You may assume
a Poiseuille flow profile and simply show that it satisfies the boundary conditions and
the flow equation.

3.3 Give the relationship between the pressure gradient and the average mass flux per unit
surface Q for this flow. What is the value of the hydrodynamic resistance R = |∇P |/|Q|?

3.4 In the case of the helium II flow, the quantum nature of the fluid implies that there is
a no-slip boundary condition at the wall for the tangential component of vn, but that
the component of vs tangential to the wall is unconstrained. The component of the
overall mass flux g perpendicular to the wall must additionally vanish. In cases such as
this one where the boundary conditions are insufficient to determine the full structure
of the flow, the missing boundary conditions are determined by minimizing the entropy



production in the fluid. As discussed in the lectures, this entropy production σ is given
by

Tσ = −AφΨdiss −Πdiss
ij ∇jA

g
i . (16)

Express σ as a function of the thermodynamic forces Aφ and Ag and the phenomeno-
logical coefficients you introduced in your flux-force relations.

3.5 What is the smallest possible value for σ and why? Note that this condition is enforced
by certain relations between the phenomenological coefficients which we will not detail
here.

3.6 Rather than imposing a pressure gradient, here we choose to look for a flow with a
given mass flux Q = Qx̂. By looking at your expression of the entropy production,
postulate a very simple flow profile with a non-vanishing mass flux that satisfies the
flow equations and the boundary conditions while realizing the absolute minimum of the
entropy production.

3.7 What does this realization of the lower bound imply for the reversibility of the flow?

3.8 Going back to the flow equations derived in Sec. 2, what is the pressure gradient for this
flow?

3.9 Deduce the value of the hydrodynamic resistance for the flow of the superfluid between
two parallel plates.

3.10 Would we have reached a similar conclusion if we had considered a shear flow?
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