
Tutorial 1: Entropic elasticity of a semiflexible filament

Physics of Complex Systems M2 – Biophysics

Long thin filaments are ubiquitous in the cell, be they DNA molecules, structural elements of the
cytoskeleton made out of proteins or carbohydrates such as polysaccharides used for energy storage or
selected for their material properties (e.g., cellulose or chitin). In many cases, the mechanical response of
these objects is crucial for their biological function, and is strongly influenced by thermal fluctuations.

Here we consider the response of a somewhat rigid polymer, e.g., a DNA filament to a longitudinal
pulling or pushing force [see Fig. 1, as well as the classic reference Marko & Siggia, Macromolecules 28,
8759 (1995)]. This response is dominated by a spring-like elasticity that originates in the straightening out
of its transverse fluctuations, as discussed in the following. We thus look for the force-extension relation
of that nonlinear spring. While physically related, the three sections can be tackled independently.

1 Force-extension relation

We consider an almost rectilinear polymer lying along the z direction, and denote its small lateral dis-
placement along the transverse directions x and y by r⊥ = {x(z), y(z)}. In this representation, the
energy of the polymer is primarily due to its bending stiffness, and thus depends on its local curvature

|∂2zr⊥| =
√

(∂2zx)2 + (∂2zy)2. As further discussed in Sec. 3, the resulting bending energy reads
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where `p is a constant known as the persistence length and the total length S of the filament is also
constant. The action of the outside tensile force F pictured in Fig. 1 results in an additional energy

Et =

∫ S

0

{
F

2

[
(∂zx)2 + (∂zy)2

]}
dz (2)

Assuming that the filament is attached such that r⊥(0) = r⊥(S) = 0, we use the Fourier decomposition

r⊥(z) =
+∞∑
n=1

r̃n sin
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S

)
with r̃n = x̃nx̂ + ỹnŷ. (3)

1.1 Write the total energy E = Eb +Et as a function of the Fourier components x̃n and ỹn, making sure
to perform the integrations over z to simplify the result.

1.2 Using the equipartition theorem, write the equilibrium thermal averages 〈x̃n〉 and 〈x̃2n〉.

1.3 As will be discussed in Sec. 3, the end-to-end length of the filament is given by
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Figure 1: Parametrization of the filament. Here fluctuations take place in both the x and y directions.



to lowest order in the filament slope. Conclude from that that
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where φ is the force F up to a normalization to be specified.

1.4 Prove that for ζ ≥ 0
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1.5 Deduce from this the filament’s force-extension relationship:
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2 Discussion of the mechanical properties

2.1 What is the physical meaning of the persistence length `p? For DNA, `p ' 50 nm. For actin,
`p ' 10µm.

2.2 Draw the small-slope force-extension relationship of Eq. (7). What is the typical stiffness of the
filament in the linear response regime? Its divergence denotes the buckling of the filament. What
force is required to achieve this buckling? How large is it for a typical actin filament with S ' 400 nm?
How does it compare to the typical molecular motor force ≈ 1 pN? How much filament compression
do you expect under such a force?

2.3 What happens beyond buckling? Give the scaling of the buckled filament’s rigidity. Compare this
situation with bending the filament with a transverse force.

3 Energy of a filament

We now study the foundation of the energies introduced in Sec. 1. We consider an inextensible filament
with constant total arclength S, but whose end-to-end length L fluctuates (Fig. 1).

3.1 The molecular bonds between the monomers constituting the filament tend to keep it straight, and
the local energy of the filament depends only on its local shape. Thus the filament bending energy
can be expressed as

Eb =

∫ S

0
f [c(s)] ds, (8)

where c(s) is the curvature of the filament at the location characterized by the arclength s and f
is an unknown function. Expand f for a weakly deformed filament to obtain an explicit form for
the bending energy as a function of c(s) up to an unknown multiplicative constant. This so-called
“worm-like chain model” is a staple of the study of biological semiflexible polymers.

3.2 For a curve defined by its position vector r(s), the curvature c(s), tangent unit vector t̂(s) and
normal unit vector n̂(s) are defined through

t̂ = ∂sr; cn̂ = ∂st̂. (9)

Writing r(s) = r⊥(s) + z(s)ẑ, where r⊥ is a vector contained within the xy, show that to lowest
order in the filament deviation from a straight line Eb is given by Eq. (1).

3.3 Prove Eq. (4).

3.4 Using this result and assuming the filament is being pulled at both ends by a force F = ±F ẑ as
in Fig. 1, demonstrate that the energy Et associated with the tension of the filament is given by
Eq. (2).


