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a b s t r a c t

The Boltzmann equation for inelastic Maxwell models is considered to determine the rheological proper-
ties in a granular binary mixture in the simple shear flow state. The transport coefficients (shear viscosity
and viscometric functions) are exactly evaluated in terms of the coefficients of restitution, the (reduced)
shear rate and the parameters of the mixture (particle masses, diameters and concentration). The results
show that in general, for a given value of the coefficients of restitution, the above transport properties
decrease with increasing shear rate.
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. Introduction

It is well-recognized that granular matter can be modeled by a
uid of hard spheres with inelastic collisions. In the simplest ver-
ion, the grains are assumed to be smooth so that the inelasticity is
nly accounted for by a constant coefficient of normal restitution.
or sufficiently low-densities, the (inelastic) Boltzmann equation
as been solved by means of the Chapman–Enskog method [1]
nd the Navier–Stokes transport coefficients have been obtained in
erms of the coefficient of restitution [2]. Moreover, some analytical
esults in far from equilibrium situations have been also reported
n the literature for inelastic hard spheres [3]. However, due to
he complex mathematical structure of the Boltzmann collision
perator, it is generally not possible to get exact results from the
oltzmann equation for inelastic hard spheres and consequently,
ost of the analytical results have been derived by using approxi-

ations and/or kinetic models.
As in the elastic case, a possible way to partially overcome the

bove difficulties is to consider the so-called inelastic Maxwell
odels (IMM), where the collision rate is independent of the rel-
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ative velocity of the two colliding particles [4]. Thanks to this
property, non-linear transport properties can be exactly obtained
in some particular problems [5–7] for IMM without introducing
additional and sometimes uncontrolled approximations. In addi-
tion, apart from their academic interest, it has also been shown
that in some cases the results derived from IMM compare well
with those obtained for inelastic hard spheres [5] and even recent
experiments [8] for magnetic grains with dipolar interactions are
well described by IMM. All these results stimulate the use of this
interaction model as a toy model to characterize the influence of
the inelasticity of collisions on the physical properties of granular
fluids.

The aim of this paper is to determine the rheological properties
(shear stress and normal stress differences) in a binary mixture
described by the Boltzmann equation for IMM and subjected to the
simple or uniform shear flow (USF). This state is perhaps one of the
most widely studied states in granular gases [9]. At a macroscopic
level, the USF is characterized by constant partial densities ni, a
uniform granular temperature T, and a linear velocity profile ux =
ay, where a is the constant shear rate. Under these conditions, the
mass and heat fluxes vanish by symmetry and the pressure or stress
tensor Pij is the only relevant flux in the problem. Conservation of

momentum implies Pi,y = const while the energy balance equation
reads

∂

∂t
T = − 2a

dn
Pxy − T�, (1)

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
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mailto:trizac@lptms.u-psud.fr
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here d is the dimensionality of the system (d = 3 for spheres
nd d = 2 for disks) and � is the inelastic cooling rate. Eq. (1)
learly shows that the temperature changes over time due to two
ompeting effects: the viscous heating term aPxy and the inelas-
ic collisional cooling term �T . While the first term is inherently
ositive (since Pxy < 0), the second term is negative since � > 0.
epending on the initial condition, one of the effects prevails
ver the other one so that the temperature either decreases or
ncreases in time, until a steady state is reached for sufficiently
ong times. Given that in this steady state the (reduced) shear rate is
nslaved to the coefficients of restitution, the problem is inherently
on-Newtonian (and so, beyond the scope of the Navier–Stokes
escription) in highly inelastic granular gases [10].

As in a previous paper for a single gas [7], the rheological proper-
ies of the granular gas are given in terms of a collision frequency �0,
hich in principle can be freely chosen. Here we will consider two

lasses of IMM: (i) a collision frequency �0 independent of temper-
ture (Model A) and (ii) a collision frequency �0(T) monotonically
ncreasing with temperature (Model B). Model A is closer to the
riginal model of Maxwell molecules for elastic gases [11,12] while
odel B with�0(T) ∝ √

T is closer to inelastic hard spheres. The pos-
ibility of having a general temperature dependence of �0(T) for
nelastic repulsive models has been recently introduced by Ernst
nd co-workers [13]. As will be shown later, Models A and B lead to
he same results in the steady state limit. In particular, the reduced
hear rate a∗ = a/�0 in the steady state is a universal function a∗

s (˛ij)
f the coefficients of restitution ˛ij and the parameters of the mix-
ure. However, since a∗ does not change in time for Model A, a
teady state does not exist except for the specific value a∗ = a∗

s (˛ij).
onsequently, a non-Newtonian hydrodynamic regime (where a∗

nd ˛ij are independent parameters) is reached in the long-time
imit where the combined effect of both control parameters on the
heological properties can be studied analytically for Model A. This
s an interesting new added value of this simple model.

The plan of the paper is as follows. We first introduce in Section 2
he Boltzmann equation framework for IMM; collisional moments
re worked out. In Section 3 we will introduce driving through a
acroscopic shear, and consider in particular the USF problem.
e shall subsequently focus on rheological properties in Section 4,
here our results for the non-linear shear viscosity and viscomet-

ic functions will be reported. Finally, conclusions will be drawn in
ection 5.

. The Boltzmann equation for IMM. Collisional moments

Let us consider a binary mixture of inelastic Maxwell gases at
ow density. In the absence of external forces, the set of non-linear
oltzmann equations for the mixture reads

∂

∂t
+ v · ∇

)
fr(r,v; t) =

∑
s

Jrs [v|fr(t), fs(t)] , (2)

here fr(r,v1; t) is the one-particle distribution function of species
(r = 1,2) and the Boltzmann collision operator Jrs [v1|fr , fs]

escribing the scattering of pairs of particles is

rs [v1|fr , fs] = ωrs
ns�d

∫
dv2

∫
d�̂

[
˛−1
rs fr(r,v′

1, t)fs(r,v′
2, t)

− fr(r,v1, t)fs(r,v2, t)
]
. (3)

ere,
r =
∫
dvfr(v) (4)

s the number density of species r,ωrs is an effective collision
requency (to be chosen later) for collisions of type r − s, �d =
luid Mech. 165 (2010) 932–940 933

2�d/2/�(d/2) is the total solid angle in d dimensions, and ˛rs ≤
1 refers to the constant coefficient of restitution for collisions
between particles of species r with s. In addition, the primes on
the velocities denote the initial values {v′

1,v′
2} that lead to {v1,v2}

following a binary collision:

v′
1 = v1 −	sr

(
1 + ˛−1

rs

)
(�̂ · g12)�̂, (5)

v′
2 = v2 +	rs

(
1 + ˛−1

rs

)
(�̂ · g12)�̂, (6)

where g12 = v1 − v2 is the relative velocity of the colliding pair, �̂ is
a unit vector directed along the centers of the two colliding spheres,
and 	rs = mr/(mr +ms).

The effective collision frequenciesωrs are independent of veloc-
ity but depend on space an time through its dependence on density
and temperature. Here, as in previous works [7] for monocompo-
nent gases, we will assume that ωrs ∝ nsTq, with q ≥ 0. The case
q = 0 (a collision frequency independent of temperature) will be
referred to as Model A while the case q > 0 (collision frequency
monotonically increasing with temperature) will be called Model
B. Model A is closer to the original model of Maxwell molecules for
elastic gases [11,12] while Model B, with q = 1/2, is closer to hard
spheres.

Apart from nr , at a hydrodynamic level, the relevant quantities
in a binary mixture are the flow velocity u, and the “granular” tem-
perature T. They are defined in terms of moments of the distribution
fr as


u =
∑
r


rur =
∑
r

∫
dvmrvfr(v), (7)

nT =
∑
r

nrTr =
∑
r

∫
dv
mr
d
V2fr(v), (8)

where 
r = mrnr, n = n1 + n2 is the total number density, 
 = 
1 +

2 is the total mass density, and V = v − u is the peculiar veloc-
ity. Eqs. (7) and (8) also define the flow velocity ur and the partial
temperature Tr of species r, the latter measuring the mean kinetic
energy of species r. As confirmed by computer simulations [14],
experiments [15] and kinetic theory calculations [16], the global
granular temperature T is in general different from the partial tem-
peratures Tr .

The collision operators conserve the particle number of each
species and the total momentum but the total energy is not con-
served:∫
dvJrs[v|fr , fs] = 0, (9)

2∑
r=1

2∑
s=1

mr

∫
dvvJrs[v|fr , fs] = 0, (10)

2∑
r=1

2∑
s=1

mr

∫
dvV2Jrs[v|fr , fs] = −dnT�, (11)

where � is identified as the total “cooling rate” due to inelastic col-
lisions among all species. At a kinetic level, it is also convenient
to discuss energy transfer in terms of the “cooling rates” �r for the

partial temperatures Tr . They are defined as

�r =
∑
s

�rs = − 1
dnrTr

∑
s

∫
dvmrV2Jrs[v|fr , fs]. (12)
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he second equality in (12) defines �rs. The total cooling rate � can
e expressed in terms of the partial cooling rates �r as

= T−1
2∑
r=1

xrTr�r, (13)

here xr = nr/n is the mole fraction of species r.
From Eqs. (9) to (11), the macroscopic balance equations for the

ass, momentum and energy of the binary mixture can be easily
btained. They are given by

tnr + nr∇ · u + ∇ · jr
mr

= 0, (14)

tu + 
−1∇ · P = 0, (15)

tT − T

n

2∑
r=1

∇ · jr
mr

+ 2
dn

(∇ · q + P : ∇u) = −� T. (16)

n the above equations, Dt = ∂t + u · ∇ is the material derivative,

r = mr
∫
dv V fr(v), (17)

s the mass flux for species r relative to the local flow,

=
∑
r

∫
dvmrVV fr(v), (18)

s the total pressure tensor, and

=
∑
r

∫
dv

1
2
mrV

2V fr(v) (19)

s the total heat flux.
The main advantage of the Boltzmann equation for Maxwell

odels (both elastic and inelastic) is that the (collisional) moments
f Jrs[fr , fs] can be exactly evaluated in terms of the moments of fr
nd fs without the explicit knowledge of both distribution functions
11]. This property has been recently exploited [20] to obtain the
etailed expressions for all the second-, third- and fourth-degree
ollisional moments for a monodisperse gas. In the case of a binary
ixture, only the first- and second-degree collisional moments

ave been also explicitly obtained. In particular [5],∫
dvmrVVJrs[fr , fs] = −ωrs


sd
	sr(1 + ˛rs)

{
2
sPr − (jr js + jsjr)

− 2
d+ 2

	sr(1+˛rs) [
sPr+
rPs− (jr js+jsjr)

+
[
d

2
(
rps + 
spr) − jr · js

]
1

]}
,

(20)

here

r =
∫
dvmrVV fr , (21)

r = nrTr = trPr/d is the partial pressure of species r, and 1 is the
× d unit tensor. It must be remarked that, in general beyond

he linear hydrodynamic regime (Navier–Stokes order), the above
roperty of the Boltzmann collision operator is not sufficient to
xactly solve the hierarchy of moment equations due to the free-
treaming term of the Boltzmann equation. Nevertheless, there
xist some particular situations (such as the simple shear flow
roblem) for which the above hierarchy can be recursively solved.

The cooling rates �rs defined by Eq. (12) can be easily obtained

rom Eq. (20) as

rs=2ωrs
d
	sr(1+˛rs)

[
1−	sr

2
(1+˛rs)�r+�s

�s
+	sr(1+˛rs)−1

d
spr
jr · js

]
,

(22)
luid Mech. 165 (2010) 932–940

where

�r = mr
�r

∑
s

m−1
s , (23)

and �r ≡ Tr/T . Eq. (22) provides the relationship between the colli-
sion frequencies ωrs and the cooling rates �rs. This relationship can
be used to fix the explicit forms of ωrs. As in previous works on
inelastic Maxwell mixtures [5,21], ωrs is chosen here to guarantee
that the cooling rate for IMM be the same as that of inelastic hard
spheres (evaluated at the local equilibrium approximation) [16].
With this choice, one gets

ωrs = xs
(

rs

12

)d−1
(
�r + �s
�r�s

)1/2

�0, �0 = A(q)nTq, (24)

where the value of the quantity A(q) is irrelevant for our purposes.
Upon deriving (24) use has been made of the fact that the mass flux
jr vanishes in the local equilibrium approximation. In the remainder
of this paper, we will take the choice (24) forωrs. The results for IMM
[5] obtained with the latter choice in the steady shear flow problem
compare very well with those theoretically obtained for inelastic
hard spheres in the first Sonine approximation and by means of
Monte Carlo simulations [22].

3. Uniform shear flow

Let us assume that the binary mixture is under USF. The USF state
is macroscopically defined by constant densities nr , a spatially uni-
form temperature T(t) and a linear velocity profile u(y) = u1(y) =
u2(y) = ayx̂, where a is the constant shear rate. Since nr and T are
uniform, then jr = q = 0, and the transport of momentum (mea-
sured by the pressure tensor) is the relevant phenomenon. At a
microscopic level, the USF is characterized by a velocity distribu-
tion function that becomes uniform in the local Lagrangian frame,
i.e., fr(r,v; t) = fr(V, t). In this frame, the Boltzmann equation (2)
reads [12]

∂

∂t
f1 − aVy ∂

∂Vx
f1 = J11[f1, f1] + J12[f1, f2] (25)

and a similar equation for f2. Eq. (25) is invariant under the transfor-
mations (Vx, Vy) → (−Vx,−Vy), Vi → −Vi, with i /= x, y. This implies
that if the initial state is compatible with the latter symmetry prop-
erties, then the solution to (25) has the same properties at any time
t > 0. Note that the properties of uniform temperature and constant
densities and shear rate are enforced in computer simulations by
applying the Lees–Edwards boundary conditions [17], regardless of
the particular interaction model considered. In the case of bound-
ary conditions representing realistic plates in relative motion, the
corresponding non-equilibrium state is the so-called Couette flow,
where densities, temperature and shear rate are no longer uniform
[18,19].

As said before, the rheological properties of the mixture are
obtained from the pressure tensor P = P1 + P2, where the partial
pressure tensors Pr (r = 1,2) are defined by Eq. (21). The elements
of these tensors can be obtained by multiplying the Boltzmann
equation (25) bymrVV and integrating over V. The result is

∂

∂t
P1,ij + aikP1,kj + ajkP1,ki + B11P1,ij + B12P2,ij = (A11p1 + A12p2) ıij,

(26)

where use has been made of Eq. (20) (with jr = 0). In Eq. (26), aij =
aıixıjy and we have introduced the coefficients
A11 = ω11

2(d+ 2)
(1 + ˛11)2 + ω12

d+ 2
	2

21(1 + ˛12)2, (27)

A12 = ω12

d+ 2

1


2
	2

21(1 + ˛12)2, (28)
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11 = ω11

d(d+ 2)
(1 + ˛11)(d+ 1 − ˛11)

+ 2ω12

d(d+ 2)
	21(1 + ˛12) [d+ 2 −	21(1 + ˛12)] , (29)

12 = −2
d
A12. (30)

similar equation can be obtained for P2, by adequate change of
ndices 1 ↔ 2. The balance equation (1) for the temperature can
e easily obtained from Eq. (26). In reduced units, Eq. (1) can be
ritten as

−1
0
∂

∂t
ln T = −�∗ − 2a∗

d
P∗
xy, (31)

here �∗ = �/�0, a∗ = a/�0, P∗
xy = Pxy/p, p = nT being the hydro-

tatic pressure. The expression for �∗ can be obtained from Eqs.
12), (13) and (22) when one takes jr = 0. It is given by

∗ = 2
d

2∑
r=1

2∑
s=1

xrxs

(

rs

12

)d−1
(
�r + �s
�r�s

)1/2

�r	sr(1 + ˛sr)

×
[

1 − 	sr
2

(1 + ˛rs)�r + �s
�s

]
. (32)

As said in Section 1, Eq. (31) shows that the temperature changes
n time due the competition of two opposite mechanisms: on the
ne hand, viscous heating (shearing work) and, on the other hand,
nergy dissipation in collisions. Moreover, the reduced shear rate
∗ is the non-equilibrium relevant parameter of the USF problem
ince it measures the distance of the system from the homogeneous
ooling state. It is apparent that, except for Model A (q = 0), the
ollision frequency �0(T) ∝ Tq is an increasing function of temper-
ture (provided q > 0), and so a∗(t) ∝ T(t)−q is a function of time.
onsequently, for q /= 0, after a transient regime a steady state is
chieved in the long time limit when both viscous heating and col-
isional cooling cancel each other and the mixture autonomously
eeks the temperature at which the above balance occurs. In this
teady state, the reduced shear rate and the coefficients of restitu-
ion are not independent parameters since they are related through
he steady state condition

∗
s P

∗
s,xy = −d

2
�∗, (33)

here we have called a∗
s and P∗

s,xy the steady-state values of the
reduced) shear rate and the pressure tensor. On the other hand,
hen q = 0, ∂ta∗ = 0 and the reduced shear rate remains in its ini-

ial value regardless of the values of the coefficients of restitution
rs. As a consequence, in the case of Model A, there is no steady state

unless a∗ takes the specific value a∗
s given by the condition (33))

nd a∗ and ˛rs are independent parameters in the USF problem. The
nalytical study of the combined effect of both control parameters
n the pressure tensor is the main goal of this paper.

. Rheological properties

In order to characterize the non-linear response of the system
o the action of strong shearing, it is convenient to introduce the
reduced) non-linear shear viscosity �∗ and the (reduced) visco-

etric functions�∗
1 and�∗

2 as
∗(a∗) = −�0

p

Pxy
a
, (34)

∗
1(a∗) = �2

0
p

Pxx − Pyy
a2

, �∗
2(a∗) = �2

0
p

Pzz − Pyy
a2

. (35)
luid Mech. 165 (2010) 932–940 935

The viscosity function �∗(a∗) is a measure of the breakdown of the
linear relationship between the shear stress Pxy and the shear rate
(Newton’s law), while the first and second viscometric functions
�∗

1,2(a∗) represent the normal stress differences. The explicit form
of the above functions depends on the interaction model consid-
ered.

4.1. Model A

In Model A (q = 0), the collision frequency is independent of
temperature and the reduced shear rate a∗ is a constant. Thus, Eq.
(26) and its counterpart for P2 constitute a linear homogeneous set
of coupled differential equations. In fact, it is easy to see that the rel-
evant elements of the partial pressure tensors are the xy-elements
along with the diagonal ones. As expected, the remaining elements
tend to zero in the long-time limit. Moreover, from Eq. (26) is also
easy to prove that, for long times, Pr,yy = Pr,zz = · · · = Pr,dd. Thus,
according to Eq. (35), the second viscometric function�∗

2 = 0. This
is a particular property of IMM since �∗

2 /= 0 for inelastic hard
spheres [22], although its magnitude is always much smaller than
that of �∗

1. As a consequence, the relevant elements of the par-
tial pressure tensors are Pr,xx = pr − (d− 1)Pr,yy, Pr,yy, and Pr,xy with
r = 1,2.

As in the monocomponent granular case [7], one can check that,
after a certain kinetic regime lasting a few collision times, the scaled
pressure tensors P∗

r,ij
= Pr,ij/p reach well-defined stationary val-

ues (non-Newtonian hydrodynamic regime), which are non-linear
functions of the (reduced) shear rate a∗ = a/�0 and the coefficients
of restitution. In terms of these scaled variables and by using matrix
notation, Eq. (26) can be rewritten as

LP = Q, (36)

where P is the column matrix defined by the set

P ≡ {P∗
1,xx, P

∗
1,yy, P

∗
1,xy, P

∗
2,xx, P

∗
2,yy, P

∗
2,xy}, (37)

Q is the column matrix

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A∗
11p

∗
1 + A∗

12p
∗
2

A∗
11p

∗
1 + A∗

12p
∗
2

0

A∗
22p

∗
2 + A∗

21p
∗
1

A∗
22p

∗
2 + A∗

21p
∗
1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (38)

and L is the square matrix

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B∗
11 + � 0 2a∗ B∗

12 0 0

0 B∗
11 + � 0 0 B∗

12 0

0 a∗ B∗
11 + � 0 0 B∗

12

B∗
21 0 0 B∗

22 + � 0 2a∗

0 B∗
21 0 0 B∗

22 + � 0

0 0 B∗
21 0 a∗ B∗

22 + �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(39)

Here, p∗
r = pr/p = xr�r, A∗

rs = Ars/�0 and B∗
rs = Brs/�0. Moreover, on

physical grounds it has been assumed that for long times the tem-
T(t) = T(0)e��0t , (40)

where � is also a non-linear function of a∗, ˛rs and the parameters
of the mixture. The (reduced) total pressure tensor P∗

ij
= Pij/p of the
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Fig. 1. Shear rate dependence of the temperature ratio �1 = T1/T in three dimen-
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ixture is defined as

∗
ij = P∗

1,ij + P∗
2,ij. (41)

The solution to Eq. (36) is

= L−1 · Q. (42)

he explicit forms for P∗
1,xx, P

∗
1,yy, and P∗

1,xy can be found in the
ppendix A. The corresponding expressions for species 2 are easily
btained by adequately changing the indices. This solution is still
ormal as we do not know the shear-rate dependence of � and the
emperature ratios�1 and�2. These quantities must be consistently
etermined from the requirements

1�1 =
P∗

1,xx + (d− 1)P∗
1,yy

d
, (43)

2�2 =
P∗

2,xx + (d− 1)P∗
2,yy

d
, (44)

2 = 1 − x1�1

x2
, (45)

hich follows from Eq. (8). Since the collision frequencies ωrs are
on-linear functions of the temperature ratios, then it is not possi-
le to get a closed equation for � or �r . Thus, one has to numerically
olve the set of non-linear equations (43) and (44).

Nevertheless, there are some limiting cases for which the
roblem can be solved analytically. For instance, in the case of
echanically equivalent particles (m1 = m2, 
1 = 
2, ˛11 = ˛22 =

12 ≡ ˛), one gets that �1 = �2 = 1 and the partial pressure tensors
∗
r,ij

can be written as

P∗
1,yy

x1
=
P∗

2,yy

x2
= 1

1 + 2�
, (46)

P∗
1,xx

x1
=
P∗

2,xx

x2
= 1 + 2d�

1 + 2�
, (47)

P∗
1,xy

x1
=
P∗

2,xy

x2
= − ã

(1 + 2�)2
, (48)

here

= 2(d+ 2)

(1 + ˛)2
a∗, (49)

nd� is the real root of the equation

(1 + 2�)2 = ã2

d
, (50)

amely,

(ã) = 2
3

sinh2
[

1
6

cosh−1
(

1 + 27
d

ã2
)]
. (51)

he parameter� governing the long-time behaviour of the temper-
ture can be easily obtained from Eqs. (31) and (40) as

= −�∗ − 2a∗

d
P∗
xy = (1 + ˛)2

d+ 2
�− 1 − ˛2

2d
(52)

here use has been made of the result �∗ = (1 − ˛2)/2d. Eqs.
46)–(52) are the same as those obtained for a monocomponent
as [7,24]. Moreover, in the absence of shear field (a∗ = 0), P∗

r,xx =
∗
r,yy = xr�r and the shear viscosity function �∗ = �∗

1 + �∗
2 where

∗
1 = x1�1(B∗

22 − �∗) + x2�2B∗
12

(B∗ − �∗)(B∗ − �∗) − B∗ B∗ , 1 ↔ 2. (53)

11 22 12 21

he temperature ratio � = �1/�2 is determined from the condition

x1

x2
� =

P∗
1,xx + (d− 1)P∗

1,yy

P∗
2,xx + (d− 1)P∗

2,yy
. (54)
played, together with the stationary curve, also shown in Fig. 7 (see text for details).
The continuous thick curve shows the locus of steady-state results (also shown in
Fig. 7) when dissipation is scanned in the admissible range ˛∈ [0,1]. The square
locates the terminal shear rate at maximum dissipation.

These results are consistent with those obtained for IMM in the
Navier–Stokes regime [21].

It must be remarked that, although the scaled pressure tensors
P∗
r,ij

reach stationary values, the gas is not in general in a steady
state since the temperature changes in time. Actually, according to
Eqs. (31) and (34), one gets

�−1
0 ∂t ln T = −�∗ + 2a∗2

d
�∗. (55)

Eq. (55) shows that T(t) either grows or decay exponentially. The
first situation occurs if 2a∗2�∗ > d�∗. In that case, the imposed shear
rate is sufficiently large (or the inelasticity is sufficiently low) as to
make the viscous heating effect dominate over the inelastic cooling.
The opposite happens if d�∗ > 2a∗2�∗. A perfect balance between
both effects takes place when 2a∗2�∗ = d�∗.

The expressions for the rheological functions
�∗(a∗) and �∗

1(a∗) depend on many parameters:{
x1,m1/m2, 
1/
2, ˛11, ˛22, ˛12, a∗}. Obviously, this com-

plexity exists in the elastic case as well [23], so that the primary
new feature is the dependence of �∗(a∗) and �∗

1(a∗) on dis-
sipation, on which we shall concentrate. Also, for simplicity,
we take the simplest case of common coefficient of restitution
(˛11 = ˛22 = ˛12 ≡ ˛). This reduces the parameter space to five
quantities:

{
x1,m1/m2, 
1/
2, ˛, a∗}. Before considering the

rheological functions �∗(a∗) and�∗
1(a∗), it is interesting to analyze

the dependence of the temperature ratio T1/T2 on the shear rate.
This quantity measures the lack of equipartition of the kinetic
energy. Obviously, T1 = T2 for any value of the shear rate and/or
the coefficient of restitution in the case of mechanically equivalent
particles. Fig. 1 shows the temperature ratio as a function of shear
rate in a situation where the grains have the same mass density
[(
1/
2)d = m1/m2]. As is often the case in driven binary granular
gases, the more massive particles have a larger granular tempera-
ture for moderate shear rates, while the reverse conclusion holds at
high shears. The inelasticity parameter ˛ and shear rate a∗ are here
considered as independent, which in general results in an unsteady

situation for the system. The intersection of a curve �1(a∗) for a
given ˛ with the steady state line shown by the continuous thick
line, provides the shear rate a∗

s corresponding to an exact balance
between viscous heating and inelastic dissipation. For a∗ > a∗

s , the
temperature diverges, while it decays to 0 in the opposite case.
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ig. 2. Temperature ratio �1 = T1/T as a function of the reduced shear rate a∗ in
hree dimensions (d = 3). Here, 
 ≡ 
1/
2 denotes the size ratio while 	 ≡ m1/m2

s the mass ratio.

e note that even in the elastic case, the temperature ratio differs
rom unity, as a signature of non-equilibrium behaviour. Only
hen the shear rate does vanish do we recover the equilibrium

quipartition result (�1 = 1). Fixing dissipation at ˛ = 0.7, Fig. 2
omplements the results of Fig. 1 by showing the influence of
ixture composition x1. The same qualitative trends are observed

s in Fig. 1, see the three upper curves. However, Fig. 2 also shows
hat changing the mass ratio (other parameters being fixed) can
lter the results and lead to an increasing ratio T1/T with increasing
∗.

It appears that the non-linear viscosity and viscometric func-
ion exhibit a more robust behaviour with shear rate. It can be
een in Fig. 3 that those functions decrease with increasing a∗. In
his figure, the steady state values are shown with the continuous
hick curve, and the maximum possible stationary shear rate is indi-

ated by the squares (which correspond to ˛ = 0). As above, for a
iven inelasticity, the intersection of the �∗ (resp�∗

1) curve with its
teady-state counterpart determines the steady-state value of the
hear-rate (resp normal stress difference). As in Fig. 1, three coef-
cients of restitution have been chosen in Fig. 3, and correspond

ig. 3. Shear rate dependence of the reduced non-linear shear viscosity �∗ for d = 3,
n equimolar mixture (x1 = 0.5), 
1/
2 = 2, andm1/m2 = 8, for three values of the
common) coefficient of restitution˛ (same situation as in Fig. 1). The inset shows�∗

1
ersus the reduced shear rate a∗ . The continuous thick curves are the loci of steady-
tate results (also shown in Fig. 7) when dissipation is scanned in the admissible
ange ˛∈ [0,1]. The squares locate the terminal shear rate at maximum dissipation.
Fig. 4. Non-linear shear viscosity �∗ and normal stress difference�∗
1 versus a∗ . The

parameters are the same as for Fig. 2, and the different curve styles have the same
meaning as in Fig. 2.

to strongly inelastic (˛ = 0.5), moderately inelastic (˛ = 0.7), and
elastic systems (˛ = 1). For completeness, we also show in Fig. 4 the
rheological functions corresponding to the parameter set of Fig. 2.
The same qualitative trend is observed as in Fig. 3. We note in Figs.
3 and 4 the systematic trend that at high shear rates, the viscosity
and normal stress difference become practically insensitive to the
parameters specifying the state of the system, in particular dissi-
pation, although the different curves do not converge onto a single
master curve when a∗ → ∞. This observation is reminiscent of the
single species phenomenology [7]. We also observe that the depen-
dence on mixture composition x1 and mass ratio is more subtle (see
e.g. the 
1/
2 = 2 and m1/m2 = 8 curves showing that the largest
shear stress and normal stress difference occur in the equimolar
case). Likewise, it is observed that for x1 = 0.5,
1/
2 = 2, the small-
est shear stress and normal stress difference correspond to like
masses (m1 = m2). We do not dwell on those effects since they are
already present in the vanishing shear rate limit. A non-trivial effect
of shear rate, however, is illustrated in Fig. 5: whereas at small a∗,

the viscosity function decreases with increasing ˛ (at least in the
physically relevant range ˛ > 0.7), increasing the shear rate leads
to the opposite effect (see the inset of Fig. 5). Enhanced dissipation
then leads to smaller shear stresses. In Fig. 5, we have displayed
the full possible range 0 ≤ ˛ ≤ 1 to show that even at small shear

Fig. 5. Non-linear shear viscosity �∗ for d = 3, 
1/
2 = 2, andm1/m2 = 8, as a func-
tion of the (common) coefficient of restitution ˛, for three mole fractions x1. The
main graph is for a∗ = 0.2 and the inset is for a∗ = 1.
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Fig. 6. Same as Fig. 5, but for the normal stress difference�∗
1.

ates, an extreme dissipation can lead to a decreasing viscosity. We
nally note here that those effects are absent for the normal stress
ifference, that appears to be a decreasing function of ˛, see Fig. 6.

.2. Model B

In Model B the collision frequency�0(T) is an increasing function
f temperature, and so the reduced shear rate a∗ is not constant.
n order to have �∗(a∗) and �∗

1(a∗) in Model B, one has to solve
umerically the non-linear set (26), discard the kinetic stage of the
volution, and eliminate time in favor of a∗(t) [7,10]. In addition,
t should be remembered that the above functions depend on the
emperature ratio, that is itself time dependent through its depen-
ence on a∗(t). The above task in the case of a mixture is therefore
significantly more complex problem than in the monodisperse

ase. However, the results derived in the single gas case [7] indi-
ate that the influence of the temperature dependence of �0 on the
heological properties is quite small. We then restrict here our dis-
ussion to the steady-state solution for Model B. In this case, it is
asy to see that the results obtained in the steady simple shear flow
tate are universal in the sense that they apply both for Model A and

odel B, regardless of the specific dependence of �0 on T.
Fig. 7 shows the corresponding rheological functions and tem-

erature ratio obtained at long times for a selected parameter set.
he figure also illustrates that in the steady state, dissipation and
educed shear are coupled (see the graph on the right hand side):

ig. 7. (left) Plots of the temperature ratio �1 = T1/T and the non-linear shear viscosity �
,m1/m2 = 8, that corresponds to grains of same mass density. Three different composit
educed shear rate. The right-hand side graph shows the ˛-dependence of the (reduced)
luid Mech. 165 (2010) 932–940

to every value of a∗ is associated a given inelasticity, so that a∗ van-
ishes in the elastic limit ˛→ 1. This explains why the stationary
temperature ratio converges to 1 in the small shear rate limit. For
a given set of parameters m1/m2, 
1/
2, and mole fraction x1, the
curves displayed are obtained by scanning all possible inelasticity
parameters ˛ from 1 corresponding to a vanishing stationary shear
rate, to ˛ = 0, which yields the maximum possible value of a∗ (e.g.
0.24 for x = 0.1 for the parameters used in Fig. 7, as can be seen in
both left and right hand side graphs). The equimolar case results
have already been shown as the continuous curves in Figs. 1 and 3.
Interestingly, it can be seen that the normal stress difference can
become an increasing function of a∗ (see the inset of Fig. 7), whereas
it is decreasing within Model A, when ˛ is fixed and a∗ is changed.
This is an illustration of the conflicting effects at work at the sta-
tionary point, when simultaneously increasing a∗ and dissipation
(indeed, �∗

1 decreases when ˛ is fixed and a∗ increases while it
increases when a∗ is fixed and ˛ decreases). As far as the shear vis-
cosity is concerned, the effects at work always lead to a decreasing
function of a∗, as with fixed dissipation within Model A.

5. Conclusions

We have determined the rheological properties (shear stress
and normal stress difference) for a binary granular mixture in
a uniform shear flow. The problem has been addressed in the
framework of the Boltzmann equation with Maxwell kernel. An
important advantage of such a model – compared to the more real-
istic inelastic hard sphere kernel – is that the collisional moments
can be obtained exactly, and do not require the explicit knowl-
edge of the velocity distribution function of both species (only low
order moments are required). It is important here to stress that in
spite of its approximate nature, IMM have been shown to fare very
favorably against Monte Carlo simulations of inelastic hard sphere
mixtures [5,22]. We therefore expect the trends reported here to
be realistic and of practical interest.

In the case of IMM, there is a characteristic frequency �0 that can
be chosen freely. To study the rheological properties, two classes of
models have been introduced. In Model A, �0 is taken independent
from the total kinetic temperature T, while in Model B, �0 scales
like Tq, with q = 1/2 to reproduce the hard-sphere behaviour. In
this respect, Model A fundamentally differs from models with q /= 0

in that it allows to disentangle the effects of dissipation (embod-
ied in the coefficients of restitution ˛rs) from those of imposed
shear (embodied in the reduced shear rate a∗ defined from the
actual shear rate a by a∗ = a/�0). Indeed, whenever q /= 0, the sys-
tem reaches at long times a steady state where viscous heating

∗ as functions of the (reduced) shear rate a∗ in the steady state for d = 3, 
1/
2 =
ions x1 are displayed. The inset shows the normal stress difference  ∗ ≡  ∗

1 versus
shear rate a∗ for the above three systems.
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ompensates for collisional cooling. In this steady state, a key point
s that the reduced shear rate is enslaved to the inelasticity, so that
he problem is inherently non-Newtonian [10] (in other words, it is
ot possible to decrease the reduced shear rate a∗ by decreasing a,
ince then collisional dissipation will be more efficient and lead to
smaller granular temperature, so that a∗ is finally unaffected). On

he other hand, within Model A, inelastic dissipation and viscous
eating generically do not compensate, so that the temperature of
he system either grows without bounds, or decreases to 0. If, how-
ver, the reduced shear rate is adjusted to the precise value that is
eached within Model B for a given parameter set, Model A admits
steady state (which is then identical to its Model B counterpart).

Outside the particular steady state point and within Model A,
he scaled pressure tensor reaches well-defined stationary val-
es which are non-linear functions of a∗ and the coefficients
f restitution ˛rs. This allows for a clear-cut definition of the
reduced) non-linear shear viscosity �∗ and normal stress differ-
nce �∗

1 (within Maxwell models, only one stress difference is
on-vanishing, whereas there are two such quantities for the hard
phere kernel). These quantities have been computed for various
arameters characterizing the mixture, and it has been found that
hen a∗ is large enough (say a∗ > 1), �∗ and �∗

1 are insensitive
o dissipation, mixture composition, mass ratio, and size ratio, but
nly depend on the shear rate. Both quantities decrease when a∗

ncreases. At smaller shear amplitudes, the detailed parameters of
he mixture becomes relevant and in particular we have found –
or physically relevant dissipation parameters – that the shear vis-
osity and normal stress difference increase when dissipation is
ncreased. The dependence on mixture composition and mass ratio
ppear more subtle, and are non-monotonous. Of particular inter-
st also is the temperature ratio, which has been seen to depend on
he parameters of the problem in a complex fashion.

Future developments include the study of the tracer limit, seg-
egation of an intruder by thermal diffusion, together with a more
eneral derivation of generalized transport coefficients from a
hapman–Enskog-like expansion [25]. Work along these lines is

n progress.
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ppendix A. Partial pressure tensors

The expression of the relevant elements of the partial pressure
ensor P∗

1 are given by

P∗
1,xx = 1

�3

{
G�2B∗

12+2a∗2GB12

[
3�2+B∗2

11+B∗
12B

∗
21+B∗

22(B∗
22+3�)+B∗

11(B∗
22+3�)

]
−F�2(B∗

22 + �) − 2a∗2F
[
B∗

11B
∗
12B

∗
21 + B∗

12B
∗
21(2B∗

22 + 3�) + (B∗
22 + �)3

]}
,

(A.1)

∗
1,yy = GB12 − F(B22 + �)

, (A.2)

�

∗
1,xy = − a∗

�2

{
F
[
B12B21 + (B22 + �)2] − GB12 (B11 + B22 + 2�)

}
,

(A.3)
luid Mech. 165 (2010) 932–940 939

where

� = B∗
12B

∗
21 − (B∗

11 + �)(B∗
22 + �), (A.4)

F = A∗
11p

∗
1 + A12p

∗
2, (A.5)

G = A∗
22p

∗
2 + A21p

∗
1. (A.6)

In the above equations, A∗
rs = Ars/�0 and B∗

rs = Brs/�0 where Ars and
Brs are given by Eqs. (27)–(30). The expressions for P∗

2,ij can easily
obtained from (A.1)–(A.3) by the adequate changes of indices.
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