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We study a generic class of inelastic soft sphere models with a binary collision rate gν

that depends on the relative velocity g. This includes previously studied inelastic hard
spheres (ν = 1) and inelastic Maxwell molecules (ν = 0). We develop a new asymp-
totic method for analyzing large deviations from Gaussian behavior for the velocity
distribution function f (c). The framework is that of the spatially uniform nonlinear
Boltzmann equation and special emphasis is put on the situation where the system is
driven by white noise. Depending on the value of exponent ν, three different situations
are reported. For ν < −2, the non-equilibrium steady state is a repelling fixed point
of the dynamics. For ν > −2, it becomes an attractive fixed point, with velocity dis-
tributions f (c) having stretched exponential behavior at large c. The corresponding
dominant behavior of f (c) is computed together with sub-leading corrections. In the
marginally stable case ν = −2, the high energy tail of f (c) is of power law type and
the associated exponents are calculated. Our analytical predictions are confronted with
Monte Carlo simulations, with a remarkably good agreement.

KEY WORDS: Boltzmann equation, granular gases, stability of steady states
PACS: 45.70, 47.70 Nd; 5.40-a, 81.05 RM.

1. INTRODUCTION

The interest in kinetic theory of dissipative systems, such as granular gases
and fluids(16,18,32,40,45) has caused a great revival in the study of the Boltzmann
equation.(38,39) Not surprisingly, the introduction of Maxwell models with their

1 Instituut voor Theoretische Fysica, Universiteit Utrecht, Postbus 80.195, 3508 TD Utrecht, The
Netherlands.

2 Dpt. de Fı́sica Aplicada I, Universidad Complutense, E-28040 Madrid, Spain.
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energy independent collision rate—which simplifies the nonlinear collision term
to a convolution product—has had a great part in that.(7,14,19) In this paper the focus
is on the velocity distribution function (v.d.f.) F(v, t) in spatially uniform states
of inelastic systems, evolving according to inelastic generalizations of the Boltz-
mann equation for classical repulsive power law interactions. For these systems we
study the asymptotic properties of the v.d.f.’s at large times and at large velocities.
This will be done for cases without energy supply, i.e. freely cooling systems,
as well as for driven systems. The latter ones may approach a non-equilibrium
steady state (NESS), and the former ones approach scaling states, described by
scaling or similarity solutions of the nonlinear Boltzmann equation. Both types
of asymptotic states show features of universality, such as independence of initial
states, and independence of the strength of the energy input, but do depend on the
type of driving device.

The big boom occurred in 2002 after the discovery of an exact scaling solu-
tion, f (c) = (2/π )(1 + c2)−2, of the spatially uniform nonlinear Boltzmann equa-
tion (NLBE) for a freely cooling one-dimensional Maxwell model.(1,2) Here, the
velocity distribution function (v.d.f) has the scaling form F(v, t) = v−d

0 f (v/v0)
where v0(t) is the r.m.s velocity and d is the number of spatial dimensions. Sub-
sequent analysis(8,23,24,35) has shown that the NLBE for freely cooling inelastic
Maxwell models in d dimensions has a scaling solution with a power law tail
f (c) ∼ 1/cs . The power law exponent s can be calculated from a transcendental
equation, and depends on the dimensionality d of the system and on the coefficient
of restitution α, where 1 − α2 measures the fractional energy loss in an inelastic
collision. The proof that the v.d.f. F(v, t) for general initial values F(v, 0) ap-
proaches for large t this scaling solution has been given in Ref. (12). The scaling
and NESS solutions mentioned above have the remarkable property of possessing
a power law tail, f (c) ∼ 1/cs , which is highly overpopulated at large velocities as
compared to a Maxwellian v.d.f ∼ exp(−c2). Solutions with overpopulated tails of
stretched exponential form, f (c) ∼ exp(−βcb) with 0 < b < 2, have been studied
before both analytically and by numerical simulations (both Molecular Dynamics
and Monte Carlo) for inelastic hard spheres,(5,13,17,24,28,30,31,37,40,49) as well as for
inelastic soft spheres.(8,25) Such states appear not only in freely cooling systems
but also in driven systems. These systems are in principle more interesting because
the collisional loss of energy may be compensated by spatially uniform heating
devices. They may drive the system into a NESS, with possibilities of experimental
verification.

Many different types of heating devices have been invented:

(i) white noise, which adds random velocity increments to the parti-
cles (8,19,24,25,35,37,40,49,50,52)

(ii) a deterministic friction force a = γ0v̂|v|θ with θ ≥ 0 and v̂ = v/v (non-
linear friction model). For θ = 1 it gives the Gaussian thermostat
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equivalent to a linear rescaling of the velocities, and for θ = 0 it gives
the ‘gravity’ thermostat, which models something like gliding friction.(37)

These thermostats have been used in theoretical, molecular dynamics and
Monte Carlo studies(5,17,22,24,29,37,46) to add (γ0 > 0) or to remove (γ0 < 0)
energy from the system.

(iii) a heating device, recently proposed in Ref.(6) that feeds energy into the
system in the ultra high energy tail of the v.d.f and forces the system into
a steady state with a power law tail. We shall come back to this model at
the end of Section 6.

(iv) a heat bath consisting of an ideal gas kept in a thermal equilibrium state,(9)

or a more exotic device that maintains the bath in some non-equilibrium
steady state in which the v.d.f. is, for instance, described by a Lévy distri-
bution, having power law tails.(3)

Over-populated tails, corresponding to large deviations from the Maxwellian
v.d.f, have also been observed in many experimental studies of driven granular
gases and fluids.(43) The heating devices used there are difficult to model in a
simple kinetic theory context.(4)

The existence of such tails is remarkable because the standard NLBE for clas-
sical gases and fluids with conservative interactions(20,21,42,47) provides the basic
notion of rapid relaxation of a general initial distribution F(v, 0) towards a steady
state described by a Maxwellian v.d.f. Here the steady state solutions satisfy the
detailed balance relation F(v′

1,∞)F(v′
2,∞) = F(v1,∞)F(v2,∞) between pre-

collision velocities (v1, v2) and post-collision ones (v′
1, v′

2). The detailed balance
relation in combination with the H -theorem forces the steady state solution to be
a Maxwellian. The basic reason for the large deviations from Maxwellian behav-
ior is the violation of detailed balance in dissipative collisions, together with the
breakdown of the H -theorem.(23)

The goal of this paper is to develop a new asymptotic method for analyzing
the large deviations from Maxwellian behavior in the high energy tails of the v.d.f.
observed in NESS solutions of the nonlinear Boltzmann equation for dissipative
systems, driven by an energy source. The class of ν models studied are the inelastic
soft spheres (6,25) with a binary collision rate, scaling like gν , where g is the relative
speed. It includes the previously studied inelastic hard spheres (ν = 1) and inelastic
Maxwell molecules (ν = 0).

The method can be applied to all driving devices listed above. Depending on
the device used, the models have in general either (i) a stable NESS, i.e attracting
fixed point solution, for b > 0 or ν > νc with stretched exponential tails f (c) ∼
exp(−βcb) and higher asymptotic corrections, like f (c) ∼ cχ exp(−βcb + β ′cb′

),
(ii) a marginally stable NESS for a threshold model with b = 0 or ν = νc with
power law tails, and (iii) an unstable NESS, i.e. a repelling fixed point solution
for b < 0 or ν < νc. For free cooling and Gaussian thermostats b = ν, for white
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noise driving b = 1 + 1
2ν and for nonlinear friction models b = ν + 1 − θ . The

preliminary results have been published in Ref. (41). The present paper focusses on
the mathematical method, and on the simple application of white noise driving (i),
and on the ultra high energy source (iii). The remaining results will be published
elsewhere.(27)

The crux of the new asymptotic analysis is the construction in Section 2 of
a linearized collision operator, whose eigenfunctions are powers of the velocity
c, and whose eigenvalues determine the power law exponent in the tail of the
distributions. The Fourier transform method used in Refs. (23, 35) for determining
power law tails can only be applied to Maxwell models (ν = 0). In Sec. 3 we
study the spectral properties of the aforementioned operator, with details given in
Appendices A and B. These two sections plus appendices can be considered as
the generalization to inelastic soft spheres of the mathematical theory for inelastic
Maxwell molecules in Refs. (14, 19). In Sec. 4 we derive the energy balance
equation for the white noise driven case, determine the stability of the fixed point
solutions, and derive the integral equation for the scaling form f (c). In Section
5 we present the high energy tails of exponential type, and in Sec. 6 those of
power law type, where also the ultra high energy source is discussed. The results
are supported by Direct Monte Carlo Simulations (DSMC scheme(10)). We end in
Sec. 7 with conclusions and perspectives.

2. BASICS OF INELASTIC SCATTERING MODELS

The nonlinear Boltzmann equation for dissipative interactions in a spatially
freely evolving state can be put in a broader perspective, that covers both elastic
and inelastic collisions, as well as interactions where the scattering of particles
is described by deterministic (conservative or dissipative) forces or by stochastic
ones. To do so it is convenient to interpret the Boltzmann equation as a stochastic
process, similar to the presentations in the classical articles of Waldmann,(51)

Uhlenbeck and Ford,(47) or in Ulam’s stochastic model.(48) The last one shows
the basics of the approach of a one-dimensional gas of elastic particles towards a
Maxwellian distribution.

We consider a spatially homogeneous fluid or gas of elastic or inelastic
particles in d dimensions, described by an isotropic velocity distribution function,
F(v, t) = F(|v|, t), and evolving according to the nonlinear Boltzmann equation,

∂t F(v, t) = I (v|F) ≡ ∫
dwdv′dw′ ∫ dn [W (v, w|v′, w′; n)

× F(v′, t)F(w′, t)− W (v′, w′|v, w; n)F(v, t)F(w, t)] ,

(2.1)

where the binary collisions are described through a transition probability per
unit time, W (v′, w′|v, w; n). The loss term Iloss and the gain term Igain represent
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respectively the contributions from the direct collisions (v, w) → (v′, w′), and
from the restituting collisions, (v′, w′) → (v, w). Here the direct and restituting
velocities have been parameterized in terms of the incoming velocities (v, w), and
an impact (unit) vector n, that is chosen on the surface of a unit sphere with a
probability proportional to the collision frequency K (g⊥, g‖). It depends only on
the length g⊥ = |g⊥| and |g‖| of the vector arguments. We further use the notations
a‖ = a · n and a⊥ = a− a‖n, and â = a/a is a unit vector.

The transition probability for the inelastic collisions, (v, w) → (v′, w′), is
given by,(25)

W (v′, w′|v, w; n) = K (g⊥, g‖)δ(d)(G′ − G)δ(d−1)(g′
⊥ − g⊥)δ(g′

‖ + αg‖), (2.2)

where G = 1
2 (v + w), g = v − w, and α obeys 0 ≤ α < 1. In the subsequent

analysis, we refrain from explicitly indicating the dimension of the argument for
the Dirac functions. The value α = 1 corresponds to the elastic case, and α = 0
to the totally inelastic case. The elastic case, possibly driven by source(s) and/or
sink(s), will not be considered here. On the other hand, the quasi-elastic limit
(α → 1) possibly coupled to large-c limits is certainly of interest for inelastic
gases.(5,44)

The transition rate (2.2) implies that the scattering laws are in all models
the same as for inelastic hard spheres, i.e. as in an inelastic collision of two
perfectly smooth spheres without rotational degrees of freedom, where G and g⊥
are conserved, and g′

‖ = −αg‖ is reflected and reduced in size by a factor α. This
implies for the direct collisions, (v, w) → (v∗, w∗),

v∗ ≡ v∗(α) = v − 1
2 (1 + α)g‖n

w∗ ≡ w∗(α) = w + 1
2 (1 + α)g‖n. (2.3)

The corresponding energy loss in such a collision is, 
E = 1
2 (v2 + w2 − v∗2 −

w∗2) = pq|g‖|2, where q = 1 − p = 1
2 (1 − α) measures the degree of inelasticity.

The restituting velocities, describing (v∗∗, w∗∗) → (v, w), are given by the inverse
transformation of (2.3), v∗∗ = v∗(1/α) and w∗∗ = w∗(1/α).

A second aspect of the interaction dynamics is the collision rate, K ∼ gσ (g).
In elastic cases the rate is proportional to the differential scattering cross-section
σ , which depends in general on the relative speed g = |g|, and on the scatter-
ing angle, which is related to the impact vector n.(21) For elastic hard spheres
σ (g) = const, and K ∼ g, and for Maxwell molecules K = const. For repulsive
power law potentials, V (r ) ∼ r−n , referred to as soft elastic spheres, the collision
frequency scales as K ∼ gσ (g) ∼ gν , and the exponent ν is related to the expo-
nent n in the power law potential through ν = 1 − 2(d − 1)/n.(26) For positive
n the exponent ν is restricted to −∞ < ν ≤ 1. As an inelastic generalization of
soft elastic spheres we propose systems with a collision frequency that scales
as K (g⊥, g‖) ∼ gν |ĝ‖|σ = gν−σ |g‖|σ , where the exponent ν parameterizes the
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energy dependence and σ the dependence on the angle of incidence θ , defined
through ĝ‖ = ĝ · n = cos θ . After inserting K in (2.1) two velocity integrations
can be carried out using the delta functions in (2.2), and the spatially homogeneous
Boltzmann equation reduces to,(25)

∂t F(v) = I (v|F) ≡
∫

n

∫
dw

[
1

α
K

(
g⊥,

g‖
α

)
F(v∗∗)F(w∗∗)− K (g⊥, g‖)F(v)F(w)

]
.

(2.4)

Here
∫

n(· · · ) = (1/�d )
∫

dn(· · · ) is an angular average over the surface area �d =
2πd/2/
( 1

2 d) of a d-dimensional unit sphere. We have absorbed constant factors
in the time scale. In the one-dimensional case

∫
n → 1 and g → g‖, g⊥ → 0.

To clarify the meaning of the exponent σ in the collision rate, we consider
the impact parameter b, defined as b = |ĝ × n| = sin θ and db = cos θdθ . The
distribution P(b) of impact parameters can be obtained from,∫

dn|ĝ‖|σ ∼
∫ π/2

0
dθ (sin θ )d−2| cos θ |σ ∼

∫ 1

0
dbbd−2(1 − b2)(σ−1)/2

≡
∫ 1

0
dbbd−2P(b). (2.5)

This shows that P(b) ∼ (1 − b2)(σ−1)/2 for σ < 1 is biased towards grazing colli-
sions, and for σ > 1 towards head on collisions. The cases with σ �= 1, correspond
to pre-collision velocity correlations between the colliding particles. This is a vi-
olation of Boltzmann’s basic postulate of molecular chaos. For dimensions d > 1
molecular chaos requires σ = 1 or K ∼ gν | cos θ |, corresponding to a uniform
distribution P(b) = 1. For mathematical convenience it looks attractive to set
σ = ν, and have the simple collision frequency K = |g‖|ν . Then the Boltzmann
equation takes the simple form,(25)

∂t F(v) =
∫

n

∫
dw|g‖|ν

[
α−ν−1 F(v∗∗)F(w∗∗) − F(v)F(w)

]
. (2.6)

Equation (2.6) becomes quite simple for inelastic Maxwell models (ν = 0), where
all angular dependence in the collision frequency is absent.(23,25,35) The Boltzmann
equation with K ∼ | cos θ | for the Maxwell model with molecular chaos, has been
studied in Refs. (14, 19, 23).

Regarding the subject of interest in this paper, i.e. high energy tails of F(v, t)
in spatially homogeneous systems, the differences between the classes of models
with different values of σ are expected to be mostly of a qualitative nature,(23) at
least for ν ≥ 0. As it turns out the shape of the distribution function, in particular its
high energy tail, depends in a sensitive way(24,25,37,49) on the energy dependence of
the collision rate at large energies, and not that much on the scattering angle. In the
present paper the Boltzmann equation (2.4) is studied for general exponents ν and
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σ , where cases with σ �= 1 do not introduce any additional complications. Most
Monte Carlo simulations (see Ref. (1) and most analytic studies(8,25,35) have been
carried out for models with biased distributions, P(b) ∼ (1 − b2)(σ−1)/2, and only
a few studies exist for molecular chaos model with σ = 1 or P(b) = 1.(11,14,23)

Equation (2.4) is a generalization of the elastic Boltzmann equation to a gen-
eral class of inelastic models with collision rate K ∼ gν | cos θ |σ , which include
all models presently known in the literature. For ν = 1 (n = ∞) one has inelas-
tic hard spheres and ν = 0 corresponds to the softer inelastic Maxwell models
(n = 2(d − 1)). Negative values of ν, as n decreases further, are also possible.
They would correspond to still softer interactions. Inelastic models with ν ≥ 1
have also been studied. In the Boltzmann equation with elastic scattering laws
there also exists a stochastic scattering model, the Very Hard Particle model with
ν = 2, for which the two-dimensional homogeneous NLBE has been solved ex-
actly as an initial value problem.(26) So, there is no a priori mathematical reason to
impose restrictions on the values of ν. Regarding the σ exponent we require that
the mean collision rate remains bounded. This implies that the angular average
appearing in the loss term of (2.4) should converge. This imposes the restric-
tion σ > −1 on the models in (2.4) (see (A.3) in Appendix A). Velocities and
time have been dimensionalized in terms of the width and the mean free time
of the initial distribution. Moreover, the Boltzmann equation obeys conservation
of mass and total momentum, but the average kinetic energy or granular tem-
perature, T ∼ 〈v2〉t , decreases in time on account of the dissipative collisions,
i.e.

∫
dv(1, v, v2)F(v, t) = (1, 0, 1

2 dv2
0(t)), where v0(t) is the r.m.s. velocity or

width of F(v, t).
To reach a spatially homogeneous steady state, energy has to be supplied

homogeneously in space. This will be done here by connecting the system to
a thermostat or heating device, as discussed in the introduction. For instance, a
negative friction force may be used as a heating device to compensate for the
dissipational losses of energy. Complex fluids (e.g. granular matter) subject to
such forces can be described–in between collisions–by the microscopic equations
of motion for the particles, ṙi = vi , and v̇i = ai + ξ̃i (i = 1, 2, . . .), where ai is a
possible conservative or friction force per unit mass, and ξ̃i a random force. If the
system is driven by Gaussian white noise (WN), the forcing can be represented
by adding a diffusion term,(52) −D∂2 F , to the Boltzmann equation. A negative
friction force can be included into the Boltzmann equation by adding a force term
(∂/∂v).(aF). The Boltzmann equation for system driven in this manner reads,

∂t F(v) + FF = I (v|F), (2.7)

where the source term takes the form,

FF = ∂ · (aF) − D∂2 F = γ0∂ · (v̂vθ F) − D∂2 F. (2.8)
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Here ∂ ≡ ∂/∂v is a gradient in v−space, and γ0 and D are positive constants.
When energy is supplied at a constant rate, driven dissipative systems can reach
a NESS. As expected, the elastic case, driven by white noise, does not reach a
steady state.(31)

In the free cooling case the inelastic interactions decrease the kinetic energy
of the colliding particles, the r.m.s. velocity v0(t) decreases, and the velocity
distribution F(v) → δ(v) as t → ∞. This scenario is supported by the nonlinear
Boltzmann equation (2.4), because the distribution δ(v) is invariant under the
collision dynamics,

I (v|δ) = 0, (2.9)

as shown in Appendix A1. In general F(v) will be non-Maxwellian, and its
shape will depend on the model parameters ν and σ . The effects of the energy
dependence of the collision rate K ∼ gν on the high energy tail of the scaling
form f (c) can be understood intuitively as follows. A tail particle with v � v0

has a collision rate K ∼ |v − w|ν � vν . The smaller ν, the smaller the value of K
in the tail, and the slower the tail particles loose and redistribute their energy over
the thermal range ν <∼ v0, and the slower the tail shrinks as a function of v, when
compared to the bulk velocities. This leads to an increase of over-population in
the tail. The reverse scenario applies when increasing ν, leading to a decrease of
over-population.

Intuitive pictures of the effects of the heating devices can also be developed.
The linear Gaussian thermostat with a = γ0v simply produces a linear rescaling
of the velocities, and has the nice property of supplying energy to or subtracting
energy from the system without changing the scaling form f (c). The nonlinear
friction force a = γ0v̂vθ produces a nonlinear rescaling, A(v) v. For θ > 1 it
represents a heating device that puts selectively energy into the tail particles,
thus leading to an increase of over-population of the tail. For θ < 1 the reverse
scenario applies. The white noise forcing on the other hand adds randomly velocity
increments 
w, drawn from a uniform d−dimensional distribution, to thermal and
tail particles. So, it is more efficient in redistributing and randomizing velocities
of tail particles, especially at smaller ν−values.

If the collision frequency K ∝ gν gets smaller (c.q. larger) at large relative
velocities, then the tail distribution shrinks slower (c.q. faster) than a Maxwellian,
resulting in an overpopulated (c.q. underpopulated) high energy tail, described by
a stretched (c.q. compressed) Gaussian, F(v) ∼ exp[−βvb] with 0 < b ≤ 2 (c.q.
b ≥ 2). The limit as b → 0+ corresponds to heavily overpopulated power law tails.
Similar scenario’s presumably occur also when dissipative systems are coupled to
an energy source, and are slowly heating up or reaching a non-equilibrium steady
state (NESS).

To study the behavior of the v.d.f. with a shrinking width we con-
sider the distribution function f (c), rescaled by the r.m.s. velocity v0,
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i.e. F(v, t) = v−d
0 f (v/v0). Suppose that for large c = v/v0 the velocity

distribution can be separated into two parts, f (c) = f0(c) + h(c), where h(c)
is the singular tail part, and f0(c) the presumably regular bulk part.5 The tail part
h(c) may be exponentially bounded ∼ exp[−βcb] with 0 < b < 2, or of power
law type. In the bulk part f0(c) the variable c is effectively restricted to bulk values
in the thermal range v � v0 or c � 1

To obtain an asymptotic expansion of f (c) we consider the ansatz,

f (c) = δ(c) + h(c), (2.10)

and we linearize the collision term I (c| f ) around the delta function. This defines
the linearized Boltzmann collision operator � as,

I (c|δ + h) = −�h(c) + O(h2), (2.11)

where Eq. (2.9) has been used. Here we restrict ourselves to isotropic functions
h(c), depending only on c = |c|. As will be shown in the next section the eigen-
functions of � decay like powers c−s . Consequently they are very suitable for
describing power law tails, f (c) ∼ c−s .

In case the high energy behavior of the v.d.f.’s are stretched Gaussians ∼
exp[−βcb], the above eigenfunctions are no longer useful, and we have developed
a method to determine an asymptotic expansion of the form,

ln f (c) ∼ −βcb + β ′cb′ + χ ln c + · · · , (2.12)

as will be discussed later.
A comment seems in order here. The delta function in (2.11) does not mean

that the thermal bulk part f0(c) (with c > 1) is singular, as explained in the para-
graph above (2.11). In fact, it is irrelevant for our arguments of extracting the
dominant large-c singularity whether the thermal part may or may not contain
any singularities. The separation of f (c) into a ’regular’ part f0(c) and a singular
part h(c) is completely analogous to the method used in Refs. (8, 23, 24, 35)
for predicting the power law tail for Maxwell models using the Fourier trans-
form method. Let the Fourier transform of f (|c|) be Fk f (|c|) = f̂ (k). Its small-k
behavior takes the form f̂ (k) = 1 + k2 f2 + k4 f4 + · · · + Akα + · · · with α �=
even integer. Here the series expansion in powers of k2 = |k|2 represents the
regular part, Fk f0(c) = f̂0(k) = 1 + k2 f2 + k4 f4 + · · · , whereas Akα represents
the dominant the small k2-singularity of ĥ(k). Subsequent Fourier inversion of
the small-k behavior of f̂ (k) shows that the regular bulk part f0(c) can be
viewed in zeroth order of approximation as δ(c). For c > 1 only the tail contri-
bution of h(c) = f (c) − δ(c) survives. The dominant small-k2 singularity of ĥ(k)

5 For certain types of driving the regularity of the solutions f (c) has been shown in Refs. (11) and (31)
for inelastic Maxwell models and hard spheres respectively.
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corresponds to the dominant large-c singularity of h(c). We also note that the
moments

∫
d c cs f (c) are largely determined by the regular bulk part, which can

not be approximated by δ(c) when calculating moments.

3. SPECTRAL PROPERTIES OF COLLISION OPERATORS

The first part of this section is devoted to a study of the eigenvalue problem
of the linearized Boltzmann collision operator �. This is most conveniently done
by first constructing the adjoint operator, �†, and determining its eigenvalues and
eigenfunctions, also referred to as (left) L-eigenfunctions of �. The adjoint is
defined through

〈k|�h〉 = 〈h|�†k〉, (3.1)

where the inner product is 〈k|h〉 = ∫
dck(c)h(c), and k(c) and h(c) are isotropic.

This can be done by using the relation,

〈k|I (F)〉 = 1

2

∫
n

∫
dcdwK (g⊥, g‖)F(c)F(w) [k(c∗) + k(w∗) − k(c) − k(w)]

(3.2)

with g = c − w, as follows from (2.4). To facilitate the analysis we express c∗, w∗

in Eq. (2.3) in terms of c⊥, w⊥, c‖, w‖ with coefficients p = 1
2 (1 + α) and q =

1
2 (1 − α) (see Appendix A1). Substitution of (2.10) into (3.2), and linearization
yields

〈k|I (δ + h)〉 � −〈k|�h〉 = −〈h|�†k〉

= −
∫

n

∫
dcK (c⊥, c‖)h(c)

[
k(c) + k(0)

− k(|c⊥ + nqc‖|) − k(|npc‖|)
]
, (3.3)

where δ(w) has been integrated out. As k(c) = k(|c|) is isotropic, the adjoint
becomes

�†k(c) =
∫

n
K (c⊥, c‖)

[
k(c) + k(0) − k(c|ĉ⊥ + nqĉ‖|) − k(pc|ĉ‖|)

]
(3.4)

with K (c⊥, c‖) = cν−σ |c‖|σ . In one dimension, where c⊥ = 0 and
∫

n → 1, the
adjoint takes the simple form

�†k(c) = |c|ν [k(|c|) + k(0) − k(q|c|) − k(p|c|)] . (3.5)
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Inspection shows that insertion of k(c) = |c|s generates a new power of |c|, which
solves our eigenvalue problem

�†|c|s = |c|s+ν[1 + δs,0 − qs − ps], (3.6)

where λs = 1 + δs,0 − qs − ps is the eigenvalue, valid for s ≥ 0. Strictly speaking,
|c|s is not an eigenfunction of �† but Eq. (3.6) shows that the family of power
law functions is stable under the action of �†. In the following, we will employ
the terminology “eigenvalue” and “eigenfunction” with a similar slight abuse of
vocabulary. The same argument shows with the help of the homogeneity relation
K (c⊥, c‖) = cν K (ĉ⊥, ĉ‖), that k(c) = cs with s ≥ 0 is also an eigenfunction of �†

for dimensions d > 1. The eigenvalue follows as

λs(σ ) =
∫

n
|ĉ‖|σ

[
1 + δs,0 − |ĉ⊥ + nqĉ‖|s − ps |ĉ‖|s

]
. (3.7)

For fixed ĉ the integrand of this (d − 1) dimensional integral is a function of
ĉ‖ = ĉ · n = cos θ . It reduces to a single integral over a polar angle (0 < θ < π )
for d ≥ 3, and for d = 2 to an integral over an azimuthal angle (0 < θ < 2π ). The
integral is evaluated in Appendix A2, with the result valid for s ≥ 0,

λs(σ ) = βσ

{
1 + δs,0 −2 F1

(− s
2 , σ+1

2 ; σ+d
2 | 1 − q2

)} − psβs+σ . (3.8)

Here 2 F1(a, b; c|z) is a hyper-geometric function and βs = ∫
n |â · n|s is an average

of | cos θ |s over a solid angle, given in (A.3). It is well defined for σ > −1.
So far we have constructed in (3.6) and (3.7) the eigenvalues λs(σ ) and

corresponding eigenfunctions ks(c) = cs of the adjoint �†, which are the (left)
L-eigenfunctions of �. To determine the (right) R-eigenfunctions hs(c), corre-
sponding to λs(σ ), we need to construct � in (2.11) explicitly. The steps are rather
technical, and are carried out in Appendix A3. However, the procedure is quite
similar to the steps from (3.4) to (3.7). Once � is constructed, inspection shows
again that �cr = µr cr+ν , where the new eigenvalue µr is different from λs . Next,
r in µr is chosen such that µr = λs . This yields r = −s − d − ν.

The most important spectral properties for our purpose are:

(i) For s > 0 the eigenvalues and R- and L-eigenfunctions are(41) (with details
derived in (A.16) and (3.6) and (3.7)),

�c−s−d−ν = λs(σ )c−s−d

�†cs = λs(σ )cs+ν . (3.9)

For s = 0 one has the stationary eigenfunctions, which are invariant under
collisions,

�δ(c) = 0 and �† · 1 = 0 (λ0(σ ) = 0). (3.10)
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Fig. 1. Eigenvalue spectrum λs (σ ) for s ≥ 0 of the collision operator in the inelastic soft sphere models
(σ, ν), and shown for various values of the coefficient of restitution α. The ordinate shows λs (σ )/βσ

for d = 2, σ = ν = 1, which approaches 1 for s → ∞, and −1 for s → 0+, whereas λ0(σ ) = 0. The
bullet is centered at (2, 0) showing that a∗ < 2, where λa∗ = 0 (intersection point with s-axis), and
also that s∗ → 2 as α → 1 (energy conservation in elastic case).

R- and L-eigenfunctions are different because � is not self-adjoint. There
is in fact among the eigenfunctions in (3.9) another, less trivial, stationary
R-eigenfunction, c−a∗−d−ν , where s = a∗ is the root of λs(σ ) = 0 (see
Fig. 1).

(ii) The spectrum exists for all s ≥ 0. It is continuous for s > 0, and s = 0 is
an isolated point of the spectrum. At s = 0 one has 2 F1(0, b; c|z) = 1 and
consequently

λ0(σ ) = 0 and lim
s→0+

λs(σ ) = −βσ . (3.11)

The zero eigenvalue expresses the conservation of mass in binary colli-
sions. In the elastic limit λ2(σ, α = 1) = 0, which expresses the conser-
vation of energy (see Fig. 1).

(iii) As βs+σ , given in (A.3), and λ
(0)
s (σ ), given in (A.4), are monotonically de-

creasing with s, λs(σ ) is monotonically increasing with s, and approaches

lim
s→∞ λs(σ ) = βσ . (3.12)

(iv) λs(σ ) is independent of ν, i.e. the energy-dependence of the collision
rate K ∼ gν |ĝ‖|σ does not affect the eigenvalue. So, it is the same for
inelastic Maxwell molecules, hard spheres, very hard particles, and very
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weakly interacting particles, as modeled by Eqs. (2.1)–(2.4). The reason is
presumably that the scattering laws are the same in all models, and equal
to those of inelastic hard spheres (2.3).

(v) The eigenvalue λs(σ ) does depend on the angular exponent σ . We also
recall that λs(σ ) for the molecular chaos models has σ = 1. For the case
(d = 3, σ = 1) the eigenvalue reduces to a simple expression,

λs(σ = 1, d = 3)/β1 = 1 − 2

s + 2

[
(1 − q)s + 1 − qs+2

1 − q2

]
, (3.13)

obtained before in Refs. (14, 23) for the three-dimensional Maxwell model
(ν = 0, σ = 1), satisfying molecular chaos. To obtain this result form (3.7)
one may use the relation,

2 F1
(− 1

2 s, 1; 2|z) = [
z
(
1 + 1

2 s
)]−1

[
1 − (1 − z)1+ 1

2 s
]

. (3.14)

One should also keep in mind that the ν-dependence of λs(σ = ν) in the
simple model of Eq. (2.6) only refers to the angular dependence of the
collision rate K = |g‖|ν = gν |ĝ‖|ν .

(vi) The eigenvalue for s = 2 has for all d the simple form

λ2(σ ) = 2pqβσ+2, (3.15)

as follows from the relation 2 F1(−1, b; c|z) = 1 − bz/c and (A.3).
(vii) The behavior of λs(σ )/βσ as a function of s is shown in Fig. 1 for various

values of the inelasticity, where σ = 1 and d = 2.
Before concluding this section we analyze the asymptotic form of

the collision operator I (c| f ) at large c, in order to improve the estimate,
I∞(c| f ) � −βσ cν f , given in the literature.(49) This extension is needed
to obtain an asymptotic expansion of the form (2.12), or equivalently,

f (c) ∼ cχ exp[−βcb + β ′cb′
], (3.16)

with b > b′. The analysis is given in (B.9) of Appendix B, with the result
for c � 1,

−I∞(c| f ) = �∞ f (c) � βσ cν

[
1 − Kσ c− 1

2 b(σ + 1)
]

f (c). (3.17)

The coefficient is given by

Kσ =



( d+σ

2 )


( d−1
2 )

(
2

βb(1−q2)

)(σ+1)/2
(σ �= 1; general)

(d−1)
βb(1−q2) (σ = 1; molecular chaos)

. (3.18)

These relations are valid for all χ, β ′, b′ < b, and d > 1. For d = 1 there
are only exponentially decaying corrections, and Kσ = 0. The arguments,
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used here and in the appendices, to analyze the properties of the operators
� and �∞ are similar in spirit to those used in Ref. (6).

4. SCALING EQUATIONS

As sketched in a qualitative manner in Section 2, the velocity distribu-
tion function F(v, t) shrinks—without external driving and in zeroth order
approximation—to a delta distribution δ(v) as the thermal velocity decreases.
However, if one re-scales the velocities in the shrinking distribution in terms of
its instantaneous width v0(t), then the rescaled distribution rapidly approaches a
time-independent scaling form f (c),

F(v, t) = (v0(t))−d f (c) and c = v/v0(t), (4.1)

as discussed in Refs. (12, 23, 25) Direct Monte Carlo Simulations (DSMC) of
the Boltzmann equation(1,5,17,37) have confirmed that after a short transient time
the rescaled velocity distribution can be collapsed on a time-independent scaling
solution f (c). These observations indicate that the long time behavior of F(v, t) in
freely cooling systems approaches a simple, and to some extent universal, scaling
form f (c), which is the same for a general class of initial distributions. It satisfies
the normalizations, ∫

dc{1, c2} f (c) = {
1, 1

2 d
}
, (4.2)

consistent with the definition of
∫

dvv2 F(v, t) = 1
2 dv2

0(t) of the r.m.s. velocity
v0(t).

To study the scaling forms in the case of white noise driving, we consider
the equation for the mean square velocity, using the Boltzmann equation (2.7) and
(2.8),

dv2
0

dt
= 2

d 〈v2|I (F)〉 + 2
d D〈v2|∂2 F〉

= −2γ (ν, σ )vν+2
0 + 4D. (4.3)

Here, we have used (3.2) with k = v2, and the relation 
E = −pqg2
‖ below (2.3),

performed the rescaling in (4.1), and introduced

γ (ν, σ ) = 1

d
pq βσ+2 〈〈|c − c1|ν+2〉〉. (4.4)

The average 〈〈· · · 〉〉 is calculated with the time-independent weights, f (c) f (c1).
So γ (ν, σ ) is an unknown constant, except for the cases ν = 0 (Maxwell) and
ν = −2 (WN-threshold model), where it takes the values,

γ (0, σ ) = pq βσ+2 and γ (−2, σ ) = pq
1

d
βσ+2. (4.5)
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For the case of free cooling without energy supply (D = 0), the r.m.s velocity in
(4.3) keeps decreasing for large t , as

v0(t)

v0(0)
∼


(1 + νt/tc(ν, σ ))−1/ν (ν > 0)
exp[−t/tc(0, σ )] (ν = 0)
(1 − |ν|t/tc(ν, σ ))1/|ν| (ν < 0)

, (4.6)

where the constant tc(ν, σ ) = 1/[γ (ν, σ )vν
0 (0)] is unknown except for ν =

{0,−2}:
tc(0, σ ) = 1/pqβσ+2 and tc(−2, σ ) = d/pqβσ+2. (4.7)

Equation (4.6) is the extension of Haff’s homogeneous cooling law(34) to inelastic
soft spheres.

The most important time scale in kinetic theory is the inverse of the mean
collision rate, defined as the average of the collision rate K = gν |ĝ‖|σ , i.e.

ω(t) =
∫

n

∫
dvdw gν |ĝ‖|σ F(v, t)F(w, t)

= βσ 〈〈|c1 − c|ν〉〉 vν
0 (t) ≡ ζ (ν, σ )vν

0 (t). (4.8)

The second line above applies only to scaling solutions, where ζ (ν, σ ) is known
explicitly for ζ (2, σ ) = dβσ (Very Hard Particles) and ζ (0, σ ) = βσ (Maxwell).
The collision frequency ω(t) depends on the external or laboratory time t . We also
consider the collision counter or internal time of a particle τ , defined through the
relation dτ = ω(t)dt . It represents the total number of collisions τ that a particle
has suffered in the external time t . With the help of (4.8) and (4.6) this differential
equation can be solved to yield

τ = 1

� (ν, σ )
ln

[
1 + ν

t

tc(ν, σ )

]1/ν

, (4.9)

where

� (ν, σ ) = γ (ν, σ )

ζ (ν, σ )
= pq βσ+2 〈〈|c − c1|ν+2〉〉

d βσ 〈〈|c − c1|ν〉〉 , (4.10)

is an unknown constant, as it depends on f (c). It reduces for ν = 0 to � (0, σ ) =
pqβσ+2/βσ . By combining (4.9) and (4.6) in the case of free cooling, the homo-
geneous cooling law takes the simple exponential form

v0(t) = v0(0) exp[−� (ν, σ )τ ]. (4.11)

On the other hand for ν < 0 the r.m.s. velocity v0(t) in (4.6), and the granular
temperature v2

0(t) vanish in a finite time tc(ν, σ )/|ν| = 1/γ (ν, σ )vν
0 (0). At the

same time the collision counter τ in (4.9) diverges. This means that in inelastic
soft sphere models with ν < 0 an infinite number of collisions occurs in a finite time
tc(ν, σ )/|ν|. A collision counter, diverging within a finite time, is also observed in
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the phenomenon of inelastic collapse,(36) occurring in inelastic hard sphere fluids.
There a finite number of particles line up in a linear array in configuration space.
The divergence of the collision counter τ in (4.9) at t = tc(ν, σ )/|ν| is a reflection
in velocity space of this inelastic collapse phenomenon. In the WN-driven case one
may also analyze the collision counter τ through dτ = ω(t)dt , and one observes
similar phenomena of inelastic collapse for ν < −2.

Next we consider the NESS. In the case of WN-driving the energy balance
in (4.3) has a stationary or fixed point solution v0(∞), given by

v2b
0 (∞) = 2D/γ (ν, σ ) (2b = ν + 2), (4.12)

and the energy balance Eq. (4.3) can be expressed as,

dv2
0(t)

dt
= 4D

[
1 −

(
v0(t)

v0(∞)

)2b
]

. (4.13)

The solution v0(t) may approach to or move away from v0(∞), depending on the
sign of b. For b = 1 + ν/2 > 0, the fixed point solution is stable and attracting, for
b < 0 it is unstable and repelling, and for b = 0 it is marginally stable. In a system
at the stability threshold (b = 0), a marginally stable NESS only exists if one
can fine tune the driving parameters in (4.3) to D = γ (−2, σ )/2 = pqβσ+2/d.
Otherwise, the energy for b = 0 or ν = −2 is increasing or decreasing linearly
with time,

v2
0(t) = v2

0(0) + (4D − 2pqβσ+2/d)t. (4.14)

The possible existence of time-independent scaling solutions can be investigated
by substituting (4.1) into (2.4) with the result

I (c| f ) = − v̇0

vν+1
0

∂ · (c f ) − D

vν+2
0

∂2 f

=
{

γ (ν, σ ) − 2D

vν+2
0

}
∂ · (c f ) − D

vν+2
0

∂2 f. (4.15)

On the last line v̇0 has been eliminated using (4.3). This equation is not yet an
integral equation for a scaling function, because the coefficients still depend on
time through v0(t).

There are two possibilities for time-independent solutions. The first one is
obtained by setting D = 0. This gives the integral equation for the scaling solution
in the free cooling state, which has been studied extensively in the literature,(24,25,49)

and leads to high energy tails of stretched exponential form for ν > 0 or to power
law tails for ν = 0. The second possibility for a time-independent solution is for
the stable NESS in the WN-noise driven case with v0(∞) given by (4.12). Then
the coefficient of the first term on the r.h.s. of (4.15) vanishes, and the integral
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equation reduces to,

I (c| f ) = − 1
2 γ (ν, σ ) ∂2 f = − 1

2 γ (ν, σ )
(

f ′′ + d−1
c f ′) (4.16)

where a prime denotes a c−derivative.
However, at the stability threshold (ν = −2) there exists a marginally stable

state, described by (4.14) with v0(∞) = v0(0), and obtained by fine tuning the
driving parameter to the value D = 1

2γ (−2, σ ). This yields the scaling equation
for the WN-noise threshold model with ν = −2,

I (c| f ) = − 1

2d
pq βσ+2∂

2 f = − 1

4d
λ2(σ )∂2 f, (4.17)

where (4.5) and (3.15) have been used. Furthermore, it is interesting to note that
the existence of a time independent scaling form does not require the energy
v2

0 to be stationary in the WN-threshold model (ν = −2). Suppose we add an
additional friction force a = γ0v, the Gaussian thermostat, to the source term of
the Boltzmann equation (2.7), (where γ0 may be positive or negative), then the
energy balance Eq. (4.3) and the integral equation for the scaling form (4.15) both
get an extra term, i.e.

v0v̇0 = −γ (−2, σ ) + 2D + γ0v
2
0

I (c| f ) = [−v0v̇0 + γ0v
2
0

]
∂ · (c f ) − D∂2 f

= [γ (−2, σ ) − 2D ]∂ · (c f ) − D∂2 f. (4.18)

When v̇0 is eliminated from the first two equations, both extra terms containing
γ0v

2
0 cancel, and the resulting equation is identical to (4.15) with ν = −2. This is

an integral equation for the scaling form.
Subsequent fine tuning of the diffusion coefficient to the value D =

1
2γ (−2, σ ) simplifies the integral equation to the same scaling Eq. (4.17), and
the energy balance equation to v̇0 = γ0v0. Consequently in the limit of large time
energy may diverge or vanish, rather than stay constant. So, the total energy does
not have to be finite for the existence of a scaling form, and the time independent
scaling solution f (c) of the fine-tuned WN-driven Boltzmann equation in (4.17)
is not affected by adding an extra Gaussian thermostat.

In performing DSMC simulations it should be noted that the realization of
a marginally stable NESS is more complicated for driving by a stochastic force
than by a deterministic friction force. The reason is that D is the mean strength
of the random kicks 〈ξ 2〉, and the realized strength fluctuates around the mean.
So fine tuning the value of D by choosing it to satisfy (4.12), does not make v̇0

vanish exactly, but it may be a bit positive or negative. Then by re-scaling the
velocities respectively down or up at regular intervals, i.e. by using the Gaussian
thermostat, a = −γ0v, respectively with γ0 > 0 one can decrease v̇0 to 0, or
with γ0 < 0 increase v̇0 to 0, thus reaching the NESS. This addition of an extra
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Gaussian thermostat leaves the integral equation for the scaling function invariant,
as we have seen in (4.18). One may also consider an alternative but very similar
algorithm, as given in Ref. (30).

Exact closed form solutions of the scaling equations are not known, except for
the freely cooling one-dimensional Maxwell model.(1) However, the high energy
tails of f (c) can be calculated explicitly with the new methods, presented in this
article, both for exponentially bounded tails, exp[−βcb] appearing in stable NESS,
as well as for power law tails, f (c) ∼ c−a appearing in marginally stable NESS
(b = 0).

5. ASYMPTOTICS FOR STABLE NESS (ν > −2)

In this section we focus on the high energy behavior of the scaling form
f (c) for a stable NESS (b = 1 + ν/2 > 0) for inelastic soft sphere models as
determined by the integral Eq. (4.16). For large c-values the collision operator
reduces to I (c| f ) ∼ −βσ cν f (c) and the solution of (4.16) has the form f (c) ∼
exp(−βcb) with b = 1 + ν/2, as has been derived in Refs. (24, 25, 49). The goal of
this section is to determine the sub-leading correction in the asymptotic expansion
(5.1) of ln f (c) for large c, i.e.

ln f (c) � −βcb + β ′cb′ + χ log c + log A + · · · (5.1)

where b > b′. To determine these exponents and coefficients we need a better
asymptotic estimate of the Boltzmann collision operator I (c| f ), when acting on a
function of the form (3.16).

According to Appendix B the large −c behavior of I (c| f ) is determined by
the linear operator �∞, which is given in (B.1). It is a limiting form for c � 1 of
the linearized Boltzmann collision operator �, and its action on functions of the
form (3.16) has been analyzed in Appendix B with the result (B.9),

I∞(c| f ) = −�∞ f � −βσ cν
[
1 − Kσ c−a

]
f (c), (5.2)

where Kσ is a constant given in (B.8) and a = b(σ + 1)/2. Then the scaling
equation (4.16) becomes

βσ cν
[
1 − Kσ c−a

]
f = 1

2γ (ν, σ )
{

f ′′ + (
d−1

c

)
f ′} . (5.3)

As this equation is homogeneous, the constant A in (5.1) cannot be determined. So
we set A = 1 and for consistency impose the restriction b > b′ > 0, as c−|b′ | �
| ln A| for c � 1. The parameters in (5.1) can be determined by substituting f (c)
of (3.16) into (5.2) and matching the exponents of powers of c and equate the
coefficients, i.e.

ησ cν
[
1 − Kσ c−a

] � β2b2 c2b−2 − 2βb β ′b′ cb+b′−2

−βb cb−2 [d − 2 + b + 2χ ] + · · · (5.4)



The Boltzmann Equation for Driven Systems of Inelastic Soft Spheres 567

To leading order we equate the terms proportional to cν and c2b−2, which yields
the exponent b and the coefficient β, with the well known results,(25)

f (c) ∼ exp[−βcb], b = 1 + 1
2ν > 0, bβ = ησ ≡ √

2βσ /γ (ν, σ ). (5.5)

The dominant tails are stretched Gaussians (0 < b < 2), or compressed ones
(b > 2). These tails are respectively over-populated or under-populated when
compared to a Gaussian. The results for soft sphere models with b = 1 + 1

2ν > 0
are valid for all dimensions d ≥ 1. We also note that the exponents b found here are
equal to the b-values that determines the stability threshold in the energy balance
Eq. (4.13). In principle, γ (ν, σ ) in (5.5) can be calculated perturbatively, using
the method developed in Refs. (25, 49) or it can be measured independently using
DSMC, as will be done in the present paper.

We first consider Eq. (5.4) for the molecular chaos models with σ = 1, where
(B.8) gives βbK1 = (d − 1)/(1 − q2), and a = b = 1 + 1

2ν. The only consistent
matching of the sub-leading exponents (satisfying the restriction b′ > 0) is ob-
tained by setting β ′ = 0. The parameters in the sub-leading correction are then

β ′ = 0, χ = −1

2
(d − 1) − 1

4
ν + 1

2
βbK1 = (d − 1)q2

2(1 − q2)
− 1

4
ν (5.6)

valid for all allowed q-values 0 < q = 1
2 (1 − α) < 1

2 . For σ �= 1 one can easily
verify that the exponents in (5.4) obey the relation ν − a �= b − 2, and matching
gives either ν − b = b + b′ − 2 > b − 2 or the reversed inequality. In the former
case, b′ = b(1 − σ )/2 > 0 which is realized for σ < 1. Then equating coefficients
yields β ′ = βKσ /(1 − σ ). In this case the sub-leading asymptotic correction in
(5.1) is β ′cb′ � |χ | log c, and in the spirit of asymptotic expansions we set χ = 0.

For the reversed inequality b′ = b(1 − σ )/2 < 0, realized for σ > 1, the sub-
leading asymptotic correction in (5.1) is |χ | log c � β ′cb′

, and in the same spirit
as above, we set β ′ = 0. The value of exponent χ is found by setting the coefficient
of cb−2 in (5.4) equal to zero. In summary:

β ′ = 0, χ = − 1
2 (d − 1) − 1

4ν (σ > 1) (5.7)

b′ = 1
2 b(1 − σ ), β ′ = β Kσ /(1 − σ ), χ = 0, (σ < 1) (5.8)

In 1-d, where Kσ = 0, the result (5.6) hold for alll ν values. Next we focus for the
WN-driven case on comparison of the Monte Carlo simulations with the theoretical
predictions. Figure 2 shows the DSMC data of one-dimensional soft sphere models
for f (c) as a function of cb with b = 1 + 1

2ν for several values of ν. Moreover, the
asymptotic large−c prediction, ln f (c) ∼ −βcb − (ν/4) ln c in (5.6), is confirmed
in Fig. 3. The value of β is independently obtained by measuring γ (ν, σ ) in (5.5)
during the DSMC simulation. Note that for the one-dimensional Maxwell model
the prediction f (c) ∼ exp[−c

√
2/pq] has a very simple form, because (5.5) gives

η0 = √
2/pq as βs = 1 for all s. Moreover, this figure shows that the correction,
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Fig. 2. The figure corresponds to a stable non equilibrium steady state at α = 0 and ν = {−1, 0, 1, 2, 3}
for white noise-driven 1-D systems. The DSMC data show that ln f (c) is linear in cb with b =
1 + ν/2 > 0. The insert with ln f (c) versus c shows the highest over-population at ν = −1 or b = 1

2
(outercurve), whereas the curve for b = ν = 2 is a Gaussian. Underpopulation occurs for ν > 2.

−(ν/4) ln c, leads to an improved agreement between theory and simulations, even
though it is tiny because of the limited range of velocities accessible.

The two-dimensional WN-driven model, with σ = ν = −1/2, is illustrated
in the next two figures. Figure 4 first displays the measured scaling form
f (c), plotted versus cb with b = 1 + ν/2 = 3/4 for different values of α. The
straight parts of the high energy tails confirm the dominant velocity dependence,
ln f (c) ∼ −βc3/4, with β increasing with α. For large enough α, f (c) is getting
closer to a Gaussian. Moreover, Fig. 5 presents a very interesting illustration of
the sub-leading correction exp(β ′cb′

). While a plot of ln f (c) versus cb yields a
straight line, and thus an apparent agreement with the dominant theoretical pre-
diction exp(−βcb), closer examination shows that measuring β through a fit to
exp(−βcb) would disagree with the predicted value of β in (5.5), which is com-
puted from the numerical data using the definition (5.5) which involves γ (ν, σ ).
On the other hand, comparison of f (c) with the full expression exp(−βcb + β ′cb′

)
–where β ′ is measured from its definition (5.8) involving Kσ – gives a very good
agreement.

Regarding the soft sphere systems in stable non-equilibrium steady states
with model parameters ν > −2, we may conclude that the agreement between
analytic and DSMC results for high energy tails is very good. Essentially all
analytic and numerical results in this section are new. They are the leading and
sub-leading asymptotic correction factors in the scaling function f (c) in a stable
NESS (b > 0) for the general class of inelastic soft sphere models. These results
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Fig. 3. Case of a white-noise driven 1-D system, with α = 0 and σ = ν = 1. The dotted line displays
f (c) vs. βcb while the dashed line corresponds to cν/4 f (c) versus βcb (b = 1 + ν/2). Taking into
account the sub-leading correction cν/4 yields a better agreement with the theoretical result, however
the figure clearly shows that this correction is very small.

include the few special cases known in the literature, i.e. the dominant asymptotic
form f (c) ∼ exp[−βcb] for white noise driven inelastic hard spheres (ν = 1)
and similar results for inelastic Maxwell models (ν = 0). The only known result
about sub-leading correction factors concerns the very special case of the three-
dimensional molecular chaos Maxwell model (d = 3, ν = 0, σ = 1), for which
Bobylev and Cercignani (11) have derived the result f (c) ∼ cχ exp[−βcb] with
χ = q2/(1 − q2). Although the derivation is not very transparent, their result
agrees with (5.6) for this special case.

6. POWER LAW TAILS AT MARGINAL STABILITY (ν = −2)

Marginal stability is a limiting property of a stable NESS as b → 0+, which
can not occur in free cooling, but only in driven states, here driven by white
noise. Below (4.14) we have explained that the marginally stable NESS can not be
reached by natural time evolution, but only by fine tuning the external parameters
in the energy source term.

As we have seen in (5.5) the asymptotic solution f (c) for stable states (b =
1 + 1

2ν > 0) is to leading order described by f (c) ∼ A exp[−βcb] with β = ησ /b.
To illustrate how power law tails arise, it is convenient to set A = eβ , and take
the limit of f (c) as b → 0. The result is f (c) ∼ exp[−ησ (cb − 1)/b] → c−η̄σ ,
with ησ = limb→0 ησ . Of course ησ is not the full exponent of the tail, because
the exponential form above represents only the leading asymptotic behavior for
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b > 0. For instance, any correction factor exp[−β ′cb′
] as appearing in (3.16),

where b′ = B(b) → 0 as b → 0, would give additional contributions.
To determine the exact exponent of the power law tail we have to solve the

scaling Eq. (4.17) for the WN-threshold model, where ν = −2. As we expect
power law solutions from the arguments above, we use the linearization in (2.9)–
(2.11) to give,

−I (c|δ + h) � �h = 1

4d
λ2(σ )∂2h = 1

2d
pqβσ+2∂

2h, (6.1)

where f (c) ∼ h(c) for c ≥ 1. Inspection of this equation shows that the operators
on both sides of the equation have the same set of R-eigenfunctions, c−s−d+2.
Substituting this function into (6.1) gives the transcendental equation,

λs(σ ) = (1/4d)s(s + d − 2)λ2(σ ) = (1/2d)s(s + d − 2)pqβσ+2. (6.2)

The possible roots of this equation, s = ad (α), depend on the spatial dimensionality
d, and on the coefficient of restitution α through p = 1 − q = (1 + α)/2. They
are candidates for power law exponents in an asymptotic solution of the form,

f (c) ∼ c−a−d+2 (6.3)

for the WN-threshold model. However there exist a priori restrictions on the
exponent a through the normalizations (4.2). If one is interested in solutions with
bounded energy, then the constraint,

∫
dcc2 f (c) < ∞, or equivalently a > 4,

applies for all d. If one allows the energy to keep increasing—as discussed below
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Fig. 5. Illustration of the relevance of the sub-leading correction (white noise, d = 2, σ = ν = −1/2).
Graph (a) corresponds to α = 0, and graph (b) to α = 1/2. The velocity distribution function is shown
as a function of cb , together with two asymptotic expressions. The first one is the first order prediction
exp(−βcb), with β calculated by DSMC and b = 1 + ν/2 = 3/4 and yields a very bad agreement.
Inclusion of the sub-leading correction exp(−βcb + β ′cb′

) (still plotted vs. cb) with β ′ calculated by
DSMC, and b′ = 9/16, gives a very good agreement. Very striking is the fact that in such a plot, f (c)
vs cb produces a linear high energy tail (in spite of the importance of the sub-leading correction),
which would then be well fitted with an effective value of β: f (c) ∼ exp(−βeff cb). As shown here,
such an effective value is markedly different from the true β in (5.5), which indicates that any fitting
procedure, aiming at computing β, is doomed to fail.
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power law tail in the 1-D soft sphere model (ν = −2). It is compared with the analytic prediction
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(4.18)—one still has to obey the restriction,
∫

dc f (c) < ∞, implying a > 2 for all
d. Moreover, for d > 1 the restriction σ > −1 applies, as discussed below (2.6).
At d = 1 the angular exponent σ is absent.

To start we consider the one-dimensional case, where Eq. (6.2) reduces to
1 − ps − qs = 1

2 s(s − 1)pq. It has two solutions: sL = 1 and sR = a = 3. Only
the largest root satisfies the normalization constraint, and corresponds to the
solution, f (c) ∼ 1/ca+d−2 ∼ 1/c2. We also note that in the one-dimensional case
the power law exponent a is independent of the coefficient of restitution. In
our DSMC calculations the energy is kept bounded by applying the Gaussian
thermostat, which does not affect the integral equation for the scaling function, as
discussed at the end of Section 4.

This analytic result is in good agreement with the one-dimensional DSMC
results as shown in Fig. 6, where the algebraic tail is observed over more than
3 decades in f (c). The energy in this state is however infinite. Why this high
overpopulation of the power law tail? The WN-threshold model is very inefficient
in equilibrating its high energy particles in comparison with hard spheres (ν = 1),
and even with Maxwell models (ν = 0), because the tail particles rarely suffer a
collision as their collision rate decreases as K ∼ |c|ν ∼ 1/|c|2.

To obtain a qualitative understanding of the α- and d-dependence of the
exponent ad (α), we use a graphical solution method by plotting the l.h.s. ys and
the r.h.s. ȳs in (6.2) as functions of s, and determine the two intersection points.
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Here we have defined,

ys = λs(σ )

βσ

and ȳs = pq(σ + 1)

2d(σ + d)
s(s + d − 2), (6.4)

where the relation βσ+2/βσ = (σ + 1)/(σ + d) has been used. The procedure
is illustrated in Fig. 7 for (d = 2, σ = 1). In the elastic limit (α → 1−) the pre-
factor in ȳs becomes smaller, and the right intersection point, sR = ad (α), moves to
infinity. It satisfies the condition a > 4, and is an acceptable power law exponent.
The left intersection point, sL , remains less than 2, and does not satisfy the
constraints of finite energy and mass.

The numerical solution of (6.2) for (d = 2, σ = 1) yields ad (α), shown
in Fig. 8. Figure 9 shows the good agreement between the predicted power
law tail and the DSMC measurements of f (c) for d = 2 and various values
of α.

Guided by the numerical result, a2(α = 0) � 4, we have verified that this
value is an exact solution of (6.2) for d = 2. To do so we have calculated λ4(1)
using the relation 2 F1(−2, 1, 1

2 (d + 1)|3/4) = (d2 + d − 3/2)/(d + 1)(d + 2), as
can be obtained from the second degree polynomial 2 F1(−2, b; c|z) in z, given
through the series in (A.6) that terminates after the term with n = 2. For higher
dimensions no such simple solutions seem to exist. For instance, ad (α = 0) =
4.929, 5.812, 6.672, . . . for d = 3, 4, 5, . . .. As ad (α) is an increasing function of
α, our graphical and numerical analysis shows that the power law tails, found in
the present section for d ≥ 2, all carry a finite energy.
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For general d the transcendental Eq. (6.2) can only be solved in a few limiting
cases. By taking the elastic limit (q → 0) in (6.2), and comparing right and left
hand sides one sees that the solution s must become large as q → 0. So we need
λs(σ = 1) for large s, as given in (3.12), and the dominant behavior of a at small
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q is,

ad (α) =
√

2d(d + σ )/q(1 + σ ) (q → 0; d > 1). (6.5)

further sub-leading corrections to (6.5) can also be calculated using asymptotic
results for 2 F1(a, b; c|z) at large a.

For large dimensionality we take the coupled limit as d → ∞ and s → ∞
while keeping x = s/d = fixed, and we set σ = 1. This leads to an algebraic equa-
tion of third order with three roots {x− < 0, x0 = 0, x+ > 0}, where the largest
one determines the exponent in the power law tail, and reads,

ad (α) = x+d ∼ d

2q(1 − q2)

{√
4q(1 + q)(1 − q2) + q6 − 2q + q3

}
(d → ∞).

(6.6)

The behavior of x+ vs α is illustrated in Fig. 8. The results (6.5) and (6.6) agree
to dominant order in the respective limits d → ∞ and q → 0.

Finally, we discuss the power law tail generated by an energy source “at
infinity”, as recently proposed in Ref. (6). Here the heating device injects energy
in the ultra high energy tail of the v.d.f. It works as follows. By randomly selecting
a particle at a very small rate γ � ω0 (being the mean collision rate), and giving
the selected particle a (macroscopic) amount of energy 
E(γ ), equal to the total
energy lost by the system in the typical (long) interval 1/γ between two injections.
After a short transient time, the energy cascades down to lower and lower energy,
and in that manner a NESS-v.d.f f (c) is maintained that does not evolve under
inelastic collision dynamics.

The mathematical framework developed in the present paper, is very suitable
to discuss the problem posed above. We are in fact looking for a solution of equation
I (c | f ) = 0. This implies through Eqs. (2.10)–(2.11) that we want a solution of
�h(c) = 0. The answer is given by (3.10). The required scaling function is the
R-eigenfunction h(c) ∼ c−s−d−ν , where s is the root of λs(σ ) = 0 with λs given
in (3.8). This expression is identical to Eq. (11) of Ref. (6) as can be verified from
(A.11).

We recall from property (iii) below (3.12) that λs(σ ) is independent of ν-
exponent in the collision rate K ∼ gν | cos θ |σ , and the σ -exponent refers only to
the angular dependence. For molecular chaos models σ = 1, as shown in (2.5),
and we restrict ourselves to this case.

The graphical solution to this problem can be seen in Fig. 1, as the point
of intersection of the λs-curve and the s-axis. For d = 1, the eigenvalue reduces
according to (3.6) to 1 − ps − qs = 0 with solutions s = a∗ = 1, and the scaling
form f (c) ∼ c−a−d−ν ∼ c−2−ν . For dimensions d ≥ 2 the scaling form has the
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d (α).

power law tail,

f (c) ∼ 1

ca∗+d+ν
(6.7)

where s = a∗ = a∗
d (α) is the solution of λs(σ = 1) = 0 and depends on d and α.

From general considerations one obtains the bounds(6)

1 = a∗
1 (α) ≤ a∗

d (α) ≤ a∗
d (1) = 2, (6.8)
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where the upper bound is related to energy conservation. The numerical solution
of λs = 0 yields the curves in Fig. 10. The variations in a∗

d (α) with α and d are
small. It is interesting to note that not all solutions have finite energy: indeed the
constraint

∫
dc c2 f (c) < ∞ implies for all d and all α the bound a∗

d (α) > 2 − ν.
Consequently, for inelastic hard spheres (ν = 1) the stationary solution with the
tail (6.7) has a finite energy for all d ≥ 2, whereas in the softer Maxwell models
(ν = 0) the solutions all carry infinite energy.

Analytic results for the present model are very limited. Near the elastic limit
(q small), one finds the exponent a∗ = 2 − x , where x � O(q), by expanding the
terms in λs for small x . The result after some calculations reads

a∗
d (α) = 4q

γE + ψ( d+1
2 )

+ O(q2), (6.9)

where γE � 0.5771 . . . is Euler’s constant and ψ(z) = 
′(z)/
(z) is the logarith-
mic derivative of the Euler Gamma function, the so-called Digamma function.

7. CONCLUSIONS AND PERSPECTIVES

In the present paper we have studied asymptotic properties of scaling or
similarity solutions, F(v, t) = (v0(t))−d f (v/v0(t)), of the nonlinear Boltzmann
equation in spatially uniform systems composed of particles with inelastic inter-
actions for large times and large velocities. The large t- and c-scales are relevant
because on such scales the universal features of the solutions survive, as the ve-
locities, c = v/v0(t), are measured in units of the r.m.s. velocity or instantaneous
width v0(t) of the distribution. It follows from DSMC solutions that the v.d.f.
F(v, t) for large classes of initial distributions, possibly driven by energy sources,
evolve into a scaling solution, and after a sufficiently long time the combination
vd

0 (t)F(v, t), plotted versus c = v/v0(t), can be collapsed for all t on a single
scaling form f (c) with an overpopulated high energy tail. This observation has
been rigorously proven for Maxwell models in Ref. (12), and for hard spheres in
Ref. (31).

In this article we have focused on the properties of scaling solutions, and in
particular on its high energy tail. In Section 2 we have introduced the Boltzmann
equation for classes of inelastic interactions, corresponding to pseudo-repulsive
power law potentials, V (r ) ∼ 1/rn , with collision rates scaling like K ∼ gν where
g is the relative speed of the interacting particles. These models embed hard scat-
terers like inelastic hard spheres (ν = 1) and soft scatterers like pseudo-Maxwell
molecules (ν = 0), and even softer ones with ν < 0. The energy loss in an inelastic
interaction is proportional to the inelasticity, (1 − α2), where α is the coefficient
of restitution. We also show in Section 2 how driving forces, such as white noise
or nonlinear friction can be included in the Boltzmann equation.
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Section 3 and Appendices A and B provide the crux of the new method,
that enables us to determine the singular large−c part h(c) of the scaling form
f (c) = δ(c) + h(c). The basic observation is that f (c) = δ(c) is invariant under
collisions, i.e. I (c|δ) = 0. The subsequent linearization in Eqs. (2.10) and (2.11) of
the nonlinear Boltzmann equation around this singular stationary solution provides
the linearized collision operator � that determines h(c).

In the Fourier transformation method –which can only be applied to Maxwell
models– the corresponding Fourier transforms are f̂ (k) = 1 + ĥ(k) and Î (k| f̂ ),
where k is the variable conjugate to c. Then, one has Î (k|1) = 0, and it leads to the
linearized operator Î (k|1 + ĥ) � −�†ĥ(k), where ĥ(k) has a leading small k sin-
gularity of O(ks), where s differs from an even positive integer. This method
leads directly to the eigenvalue equations, solved in Refs. (23, 35) to deter-
mine the power law exponent a in f (c) ∼ 1/ca+d for Maxwell models. The
arguments above, in the reverse direction, have generated the essential sugges-
tion to introduce � for general soft sphere models with ν �= 0, and to study its
properties.

Section 4 provides the important link between on the one hand the stability
(b > 0) and the marginal stability (b = 0) of fixed point solutions of the energy
balance equation, and on the other hand the approach of solutions of the Boltzmann
equation to a scaling form f (c) ∼ exp(−βcb) with the stretched exponent b > 0,
as well as the existence of power law solutions f (c) ∼ c−a−d−ν in the ν-model at
its stability threshold (b = 0).

The stretching exponent for the ν-models with white noise driving, discussed
in this paper, is b = 1 + ν/2. The b-values for free cooling and general nonlinear
friction were mentioned in the introduction. The existence of power law solutions
in the corresponding threshold models (b = 0), as well as the calculation of the
power law exponents will be published elsewhere.(27) The application of the general
theory to white noise driving for stable soft sphere models was presented in Section
5 where also the importance of sub-leading corrections was demonstrated in Fig. 5.

We have also analyzed an inelastic d-dimensional BGK model(15,25) for free
cooling and white noise driving. In the former case the scaling solution can be
solved exactly. The model shows an algebraic tail f (c) ∼ c−a−d with an exponent
a ∼ 1/(1 − α2), where 1 − α2 is again the fractional loss of energy in a collision.
For white noise driving, one finds asymptotically f (c) ∼ exp(−βc). So the BGK
model exhibits the generic behavior of a Maxwell model.

In Section 6 the power law exponent a = ad (α) in the threshold model
(b = 1 + ν/2 = 0) for white noise driving is determined from a transcenden-
tal equation that can be solved exactly for d = 1 and leads to the power law
tail f (c) ∼ c−a−d−ν ∼ c−2, as illustrated in Fig. 6. For general dimensions, the
transcendental equation has been studied analytically, graphically and numerically
and the power law exponent ad (α) for d = 2 and σ = 1 is compared with the
asymptotic result for large d in Fig. 8. In our new asymptotic method the power
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law tail for a system driven by the ultra-high energy source is simply determined
by the eigenvalue equation, �hs(c) = λshs(c) = 0, where the eigenvalue λs = 0
at s = a∗, and where the tail is given by the R-eigenfunction, ha∗ (c) ∼ c−a∗−d−ν .

The universal feature of thermodynamic equilibrium in systems with con-
servative interactions is the Gibbs’ state in which the v.d.f. is always Maxwellian,
exp[−c2]. The conclusion from our analysis tends to be that the only generic feature
of the present scaling solutions for systems with dissipative interactions is overpop-
ulation of the high energy tails relative to Maxwellians. These over-populated tails
come in two shapes, either stretched exponentials, f (c) ∼ exp[−βcb] (see Figs.
2 and 4), or power law tails, f (c) ∼ c−s with s = a + d + ν (see Figs. 6 and 9).
The stretching exponent b = 1 + 1

2ν, and the power law exponent s = a + d + ν

with a = ad (α) depend linearly on the interaction exponent ν, and they depend
sensitively on the inelasticity and on the driving device used.(27)

Furthermore, to test the theoretical predictions about tails in the velocity
distributions by laboratory experiments, there is the additional problem that the
fundamental inter-particle interactions, as well as the interactions between granular
particles and macroscopic driving devices are not really known.

APPENDIX A: BOLTZMANN COLLISION OPERATOR

A.1. Nonlinear Operator I

A convenient representation of the nonlinear collision operator is obtained by
changing integration variables w = (w⊥, w‖) in (2.4) into (u⊥, u‖) = (w∗∗

⊥ , w∗∗
‖ ),

where w∗∗ = w∗(1/α) according to (2.3). This implies

v∗∗
⊥ = v⊥, v∗∗

‖ = 1

α
(−qv‖ + pw‖)

u⊥ = w∗∗
⊥ = w⊥, u‖ = w∗∗

‖ = 1

α
(pv‖ − qw‖), (A.1)

where p = 1 − q = 1
2 (1 + α). Consequently dw = (α/q)du and v‖ − w‖ =

(α/q)(u‖ − v‖). Inserting these results in (2.4) gives the following representation
of the nonlinear collision term,

I (v|F) =
∫

n

∫
du

[
1

q
K

(
g⊥,

g‖
q

)
F

(
v⊥ + n

v‖ − pu‖
q

)
− K (g⊥, g‖)F(v)

]
F(u) (A.2)

with g = u − v. By substituting F(v) = δ(v) and using the explicit form of the
collision rate, K = gν |ĝ‖|σ = gν−σ |g‖|σ , it is easy to verify that I (v|δ) = 0, at
least for ν ≥ 0. As we have seen in Section II, negative ν−values correspond in
the case of elastic interactions to a potential V (r ) ∼ 1/rn with exponent 0 < n ≤
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2(d − 1), representing weak interactions. To fix the divergence difficulties in K
at g = 0 we introduce for ν < 0 a small−g cut off in the collision frequency, i.e.
K ∝ (g + v0(t)
)ν , where 
 is a positive constant of order unity. All applications
in the present paper of the cut off K for ν < 0 concern NESS’s for driven cases,
where v0(∞) is finite and non-vanishing. So v0
 may be simply replaced by 
. The
reason for adding the factor v0 is solely for theoretical convenience, and ensures
that the Boltzmann equation after rescaling leads to time-independent scaling
equations for models with ν < 0. For asymptotically large velocities, v = v0c
with c � 1, the w−integration in I (v|F) is typically restricted to w ≤ v0, and the
collision frequency becomes K ∼ (v + v0
)−|ν||v̂‖|σ . Consequently, the collision
term with the cut off collision frequency also satisfies the relation, I (v|δ) = 0,
because the product K (v⊥, v‖)δ(v) is well-behaved, the gain and loss term cancel,
and the linearized collision operator � in (2.11) is well behaved for ν < 0 as
well. Moreover, for asymptotically large−v the collision operator I and � are
independent of the cut off. We also note that for ν < 0 the collision frequency
K at large v is vanishing like 1/v|ν|, and the mechanisms for randomizing the
large−v particles and redistributing their energy over all particles is essentially
lacking. Consequently the tail distribution is expected to be heavily overpopulated.

In our DSMC method for numerically solving the nonlinear Boltzmann equa-
tion for negative ν−values, a similar small velocity cut-off in the collision rate is
required as well.

A.2. Evaluation of Eigenvalue λs(σ )

The evaluation of the eigenvalue starts from expression (3.7) containing four
terms. The first, second and fourth one are determined by the angular average of
| cos θ |s , i.e.

βs =
∫

n
|â‖|s =

∫ π/2
0 dθ (sin θ )d−2| cos θ |s∫ π/2

0 dθ (sin θ )d−2
= 


(
s+1

2

)



(
d
2

)



(
s+d

2

)



(
1
2

) , (A.3)

where â is a fixed direction. This integral converges for σ > −1. The third term,
denoted by λ

(a)
s , is more complicated, i.e.

λ(a)
s =

∫
n
|ĉ‖|σ |ĉ⊥ + qĉ‖n|s =

∫
n
|ĉ‖|σ (ĉ2

⊥ + q2ĉ2
‖)s/2

= −
∫ π/2

0 dθ (sin θ )d−1
[
1 − z cos2 θ

]s/2
(cos θ )σ∫ π/2

0 dθ (sin θ )d−2
(A.4)

In the last equality we have used the relation ĉ2
⊥ + ĉ2

‖ = 1 and defined z =
1 − q2. Next, we introduced the change of variables µ = ĉ2

‖ = cos2 θ and dµ =
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−2 cos θ sin θ dθ , to obtain

λ
(a)
s

βσ

= − 1

B
(

d−1
2 , 1

2

) ∫ 1

0
dµµ(σ−1)/2(1 − µ)(d−3)/2(1 − zµ)s/2

= − 2 F1

(
− s

2
,
σ + 1

2
;
σ + d

2

∣∣∣∣ z

)
(A.5)

where B(x, y) = 
(x)
(y)/
(x + y). The integral can be identified as a repre-
sentation of the hyper-geometric function (33)

2 F1(a, b; c|z) =
∞∑

n=0

(a)n (b)n zn

n!(c)n

= (1/B(b, c − b))
∫ 1

0
dx xb−1 (1 − x)c−b−1 (1 − zx)−a, (A.6)

where (a)n = 
(a + n)/
(a) and βσ is given by (A.3). Combining results yields
the eigenvalue

λs(σ ) = βσ

{
1 + δs,0 −2 F1

(− s
2 , σ+1

2 ; σ+d
2 | 1 − q2

)} − psβs+σ . (A.7)

A.3. Linear Operator � and its Eigenfunctions

To construct �, defined in (2.11), we start from the representation I (c|F)
in (A.2) with F(c) = δ(c) + h(c), and use I (c|δ) = 0. This yields after some
transformations,

� = �(a) + �(b) + �(l), (A.8)

where

�(l)h(c) =
∫

n
K (c⊥, c‖)h(c) + δ(c)

∫
n

∫
du K (u⊥, u‖)h(u)

�(a)h(c) = −
∫

n

1

q
K

(
c⊥,

c‖
q

)
h

(∣∣∣∣c⊥ + n
c‖
q

∣∣∣∣)
�(b)h(c) = −

∫
n

1

p
K

(
u⊥,

c‖ − u‖
p

)
h

(∣∣∣∣u⊥ + n
c‖ − qu‖

p

∣∣∣∣) δ(c⊥ + n u‖)

= −
∫

n

∫
du K (u⊥, u‖) h(u)δ(c − n p u‖). (A.9)

Inspection of the expressions for �(a) and �(b) shows that �cr = µr cr+ν , where
the eigenvalue µr is different form λr in (A.7). Rather than first calculating
µr explicitly, and then determining r such that µr = λs , we simply state that
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r = −s − d + 2, i.e.

�c−s−d−ν = λsc−s−d (s > 0, c > 0), (A.10)

and verify a posteriori that λs is equal to the expression (A.7).
Consider first �(a) in (A.9), and substitute h(c) = c−s−d−ν . By performing

similar substitutions as in the steps (A.3) to (A.5) we obtain

λ(a)
s = −q−σ−1

∫
n
|ĉ‖|σ

[
1 +

(
1

q2
− 1

)
ĉ2
‖

]−(s+d+σ )/2

= −βσ q−σ−1
2 F1

(
s + d + σ

2
,
σ + 1

2
;
σ + d

2

∣∣∣∣ z

z − 1

)
= βσ 2 F1

(
− s

2
,
σ + 1

2
;
σ + d

2

∣∣∣∣1 − q2

)
, (A.11)

where z = 1 − q2. The last line has been obtained with the help of Eq. (9.131.1)
of Ref. (33), and is identical to the term containing the function 2 F1 in (A.7). To
evaluate �(b)h(c) we use the relation (A.9),

δ(c − np u‖) = 1

pcd−1
δ(ĉ − n) δ

(
|u‖| − c

p

)
, (A.12)

and integrate out both delta functions with the result,

�(b)
s h(c) = −2 cσ+1−d

�d pσ+1

∫
du⊥ [uν−σ h(u)]|u‖|=c/p. (A.13)

Setting h(c) = 1/cs+d+ν and changing variables u⊥ = x c/p, we obtain

λ(b)
s = −2 ps

�d

∫
dd−1x

(x2 + 1)α
= −ps βs+σ . (A.14)

Here we used the relations (A.3) and α = (s + d + σ )/2 in agreement with the
last term in (A.7). One similarly verifies that �(l) in (A.8) for c > 0 yields

�(l) 1

cs+d+ν
=

∫
n

K (c⊥, c‖)

cs+d+ν
=

∫
n

|ĉ‖|σ
cs+d

= βσ

cs+d
. (A.15)

In summary, we have obtained for c > 0, s > 0,

�c−s−d−ν = λs(σ ) c−s−d and �†cs = λs(σ ) cs+ν (A.16)

and for s = 0 one can verify that,

�δ(c) = 0 and λ†1 = 0 (�0(σ ) = 0). (A.17)
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APPENDIX B: ESTIMATES OF I OR EXPONENTIALLY

BOUNDED FUNCTIONS

The goal of this appendix is to improve the large−c estimate of the nonlinear
collision operator, I (c| f ) � −βσ cν f , as given in the literature.(24,49) The basic
idea of the method is to split the v.d.f. f (c) = f0(c) + h(c) into a regular bulk part
f0(c), say of Gaussian shape, and a small singular part h(c). The bulk part carries
the mass of the distribution, i.e.

∫
dc f0(c) = 1. Then f0(c) vanishes effectively

beyond the thermal range, say c>∼3, where the small singular part h(c) is living
(see DSMC results in Fig. 3 for d = 1, and Fig. 4 for d = 2). For c � 1 the bulk
part can be viewed in zeroth approximation as a normalized Dirac delta function
δ(c), and we represent the v.d.f. as f (c) = δ(c) + h(c). Moreover, this caricature
of the bulk part, δ(c), makes the nonlinear collision term vanish according to (2.9),
and we can linearize the large−c form of I (c|δ + h) = −�h(c). Inspection of the
contributions �(l),�(a), and �(b) in (A.8) and (A.9) in Appendix A shows that
the term in �(l)h, proportional to δ(c), and �(b)h ∝ ∫

n δ(c⊥), are short range, and
consequently the collision term for c � 1 reduces to its asymptotic form,

I∞(c|δ + h) = −�∞h(c)

= −K (c⊥, c‖)h(c) + (1/q)
∫

n
K (c⊥, c‖/q)h(|c⊥ + nc‖/q|),

(B.1)

where
∫

n K (c⊥, c‖) = cνβσ , as implied by (A.15). We need an asymptotic estimate
of the second term on the r.h.s. of (B.1), �(a), when acting on exponentially
bounded functions h(c) of the form (3.16),

�(a) f ∼ �(a)cχ exp[−βcb + β ′cb′
] ≡ J (c)cν f (c) (B.2)

with b > 0. Here the last term denotes the outcome of the calculations. To calculate
J (c) we introduce the variables, ĉ2

‖ = 1 − ĉ2
⊥ = cos2 θ ≡ µ, and ζ = (1 − q2)/q2.

Then the integrand in (B.1) is a function H (|ĉ‖|) = K f of |ĉ‖| with,

|c⊥ + n c‖/q| = [c2
⊥ + c2

‖/q2]1/2 = c [1 + ζµ]1/2

K (c⊥, c‖/q) = ∣∣c‖/q
∣∣σ [c2

⊥ + c2
‖/q2](ν−σ )/2 = q−σ cνµσ/2[1 + ζµ](ν−σ )/2

f (|c⊥ + nc‖/q|) = cχ (1 + ζµ)χ/2 exp[−βcb(1 + ζµ)b/2]

∫
n

H (|ĉ‖|) =
∫ π/2

0 dθ (sin θ )d−2 H (cos θ )∫ π/2
0 dθ (sin θ )d−2

=
∫ 1

0 dµ(1 − µ)(d−3)/2µ−1/2 H (
√

µ)

B
(

d−1
2 , 1

2

) , (B.3)
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where B(x, y) = 
(x)
(y)/
(x + y). With the help of (B.1)–(B.3) we obtain,

J (c) = 1

qσ+1 B
(

d−1
2 , 1

2

) ∫ 1

0
dµ(1 − µ)(d−3)/2µ(σ−1)/2(1 + ζµ)(ν−σ+χ)/2 E(µ)],

(B.4)
where E(µ) is defined as,

E(µ) = exp
{
−βcb[(1 + ζµ)b/2 − 1] + β ′‘cb′

[(1 + ζµ)b′/2 − 1]
}

� exp[−Xµ + X ′µ] (µ � 0) (B.5)

with X = 1
2βbζcb and X ′ = 1

2βb′ζcb′
. For c � 1 the integrand in (B.4) vanishes

exponentially fast, unless µ = cos2 θ � 0 (grazing collisions). Near µ = 0 factors
of the form (1 + Aµ)a can be approximated by unity, and E(µ) itself by the second
line of (B.5). Changing integration variables Xµ = t , and taking the large−c or
large−X limit yields for the integral,∫ 1

0
dµµ(σ−1)/2e−Xµ+X ′µ = 
((σ + 1)/2)/X (σ+1)/2{1 + O(1/X )}. (B.6)

Consequently the large−c behavior of J (c) is,

J (c) ∼ 

(

σ+1
2

)
qσ+1 B

(
d−1

2 , 1
2

) (
2

βbζcb

)(σ+1)/2

≡ βσKσ c−b(σ+1)/2. (B.7)

Inserting βσ from (A.3) and ζ = (1 − q2)/q2 we obtain for the coefficient,

Kσ = 

(

σ+1
2

)
βσ B

(
d−1

2 , 1
2

) (
2

βb(1 − q2)

)(σ+1)/2

= 

(

d+σ
2

)



(
d−1

2

) (
2

βb(1 − q2)

)(σ+1)/2

.

(B.8)
By combining (B.1), (B.2) and (B.7), and observing that f (c) ∼ h(c) for c � 1,
the nonlinear collision term takes the asymptotic form,

I∞(c| f ) = −βσ cν[1 − Kσ c−a] f (c), (B.9)

with a = 1
2 b(σ + 1). The derivation also shows that for d = 1 the algebraic cor-

rection term in (B.8) is absent because the angular integral
∫

n is missing. So for
|c| > 1 we have in one dimension,

�h(c) = |c|ν{h(c) − q−ν−1h(c/q) − p−ν−1h(c/p)}. (B.10)

Here q = 1 − p = 1
2 (1 − α) and 0 < q ≤ 1

2 p < 1. So, as long as α < 1, the con-
tributions from h(c/q) and h(c/p), originating from the gain term, are exponen-
tially separated from the loss term in case h(c) ∼ exp[−βcb] with b > 0.
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