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Abstract.  The H-theorem, originally derived at the level of the Boltzmann 
nonlinear kinetic equation for a dilute gas undergoing elastic collisions, strongly 
constrains the velocity distribution of the gas to evolve irreversibly towards 
equilibrium. As such, the theorem could not be generalized to account for 
dissipative systems: the conservative nature of collisions is an essential ingredient 
in the standard derivation. For a dissipative gas of grains, we construct here 
a simple functional H  related to the original H, that can be qualified as a 
Lyapunov functional. It is positive, and results backed by three independent 
simulation approaches (a deterministic spectral method, the stochastic direct 
simulation Monte Carlo technique, and molecular dynamics) indicate that it is 
also nonincreasing. Both driven and unforced cases are investigated.
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I.  Introduction

In 1872, Boltzmann published one of his most important papers [1]. This contribution 
can arguably be considered as the eective birth of kinetic theory, a domain pioneered 
by Bernoulli, Joule and Maxwell to name but a few, and that has turned into an 
active field of research in mathematics [2], physics [3], and engineering [4]. The inter-
est of reference [1] is twofold. First, the time evolution of the velocity distribution 
function f tv,( ) for a dilute gas far from equilibrium was derived, under the essential 
assumption of molecular chaos (Stosszahlansatz), that is, assuming the absence of cor-
relations between the precollisional velocities of colliding partners [5, 6]. For the sake 
of the discussion, we omit here the spatial dependence of the velocity distribution. 

Second, and remarkably, Boltzmann also introduced a functional ∫=H t f f vlog d( )  of 

the instantaneous and time dependent distribution function f , that can be seen as a 

nonequilibrium entropy: the corresponding H-theorem [5, 6] states that this functional 
has a negative production, and vanishes only in equilibrium [7]6,7. It is therefore a 

Contents

I.  Introduction	 2

II. N-particle description	 4

II.A.  The unforced system.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II.B.  The driven system.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

III.  One-particle description	 8

IV.  The conjectured Lyapunov function	 10

V.  Conclusions	 15

Appendix A. Evolution equation for the temperature in the  
free-cooling case	 16

Appendix B. Evaluation of 
ss

ss

dd

dd
NNH ( )

	 17

Appendix C. Consistency of Kac’s equation in the stochastic  
thermostat case	 18

References	 19

6 It should be noted here that Boltzmann’s functional is clearly a forerunner of Shannon’s information measure, 
introduced more than 70 years later [45]. This measure is of paramount importance in data and signal analysis 
or transmission. It should also be stressed that the H-theorem today is still a remarkable source of inspiration to 
attack many mathematical problems (see e.g. [46]), sociophysics questions (see e.g. [47]) or to find new classes 
of time dependent exact solutions to the Boltzmann equation under confinement [48].
7 The H-theorem essentially holds for dilute hard core systems (with negligible internal energy compared to the 
kinetic energy), see e.g. Jaynes [7] for a discussion of the ‘violations’ occurring in real gases. See also Garrido 
et al [7] for a more recent and precise account.
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Lyapunov-like functional. This explains, in this particular context, how molecular col-
lisions irreversibly lead to equilibrium. Given that the underlying equations of motion 
are time-reversible (with elastic collisions), this finding ignited a long lasting and 
heated debate, an account of which is not the purpose of the present paper, and can 
be found in [8, 9] (see also [10] and references therein for a more technical discussion). 
In essence, the statistical nature of the H-theorem was not fully recognized in the early 
days. Ironically, when dissipative collisions are considered—as e.g. is the case between 
macroscopic grains for which the equations of motion are irreversible [11, 12]—, a well 
defined time’s arrow is present at the level of interactions, but no H-like theorem could 
be derived so far [13, 14].

The aim of this paper is to present strong hints that a simple generalization of 
Boltzmann’s original functional can be constructed, that exhibits monotonous behavior 
with time and tends to zero. More specifically, we shall be interested in the dynamical 
behavior of a spatially homogeneous granular gas, made up of a collection of a large 
number of grains undergoing dissipative collisions. The grains are treated as inelastic 
hard spheres, see e.g. [11, 15] for reviews of the rich phenomenology of this class of 
systems. We will consider two cases depending on the dynamics of the grains between 
collisions: the free-cooling case on the one hand, in which the grains move freely, and 
the stochastic thermostat case on the other hand, in which the grains are driven by 
some random external force. In the first case, it is known from particle simulations that 
the system reaches an autosimilar regime in which all the time dependence in the one-
particle distribution function goes through the instantaneous temperature (defined as 
the second velocity moment of the distribution) [16–18]. In the second case, a station-
ary state is reached in which the energy lost in collisions is compensated by the energy 
injected by the thermostat [19].

We first study an N-particle model where the dynamics of the particles’ velocities 
are treated as a Markov process. A Lyapunov function can be identified exactly imply-
ing, under plausible conditions, that the thermostated system reaches the stationary 
state in the long-time limit. In the free-cooling case, the consequence is that all the 
time dependence in the N-particle probability distribution is encoded in the instanta-
neous temperature. This scaling is similar to the one proposed in [20] at the level of 
the Liouville equation and, of course, implies the one at the level of the one-particle 
distribution. Inspired by the previous model, we propose a Lyapunov functional for the 
inelastic homogeneous nonlinear Boltzmann equation that describes the dynamics of 
the system in the low density limit and for ∞N →  [12, 20]. The functional is measured 
with three independent and complementary numerical techniques, with the result that 
it is always a nonincreasing function of time. These results point in the same direc-
tion as those of [21], which focussed on thermostated systems with an emphasis on 
simplified collision models or kernels.

The structure of the paper is as follows. In section  II, the N-particle model is 
introduced and the corresponding H-functional identified. This is then analyzed in 
section III at the level of the one-particle distribution function to in turn define, in 
section  IV, the candidate Lyapunov function that is a central object in our work.  
In section IV, simulation results are also shown. Finally, the last section contains some 
summarizing remarks.
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II. N-particle description

We consider a system of N inelastic particles of mass m, diameter σ and spatial dimen-
sion d. We will assume that a microstate is specified by giving the velocities of the N 

particles, ≡ =t tV vi i
N

1( ) { ( )} , at a given time t. The dynamics is Markovian, generated 
by the following rule: two particles i and j are chosen at random, together with a unit, 

center-to-center vector σ̂, from which the postcollisional velocities ′ ′v v,i j follow

σ σα
= −

+
⋅′v v v

1

2
,i i ijˆ ˆ( )� (1)

σ σα
= +

+
⋅′v v v

1

2
.j j ijˆ ˆ( )� (2)

Here, = −v v vij i j, and α is the coecient of normal restitution that will be considered 
velocity-independent. It fulfills α<0 1⩽  and collisions are elastic for α = 1. In the hard 
particle model, the collision frequency is proportional to σ ⋅ vijˆ( ). Nevertheless, we will 
consider a more general model in which this frequency is proportional to σ ⋅ γvijˆ( )  where 
γ is a fixed positive parameter (γ 0⩾ ) [22]. Then, the hard particles model is obtained 
for γ = 1, while Maxwell molecules are for γ = 0. Two cases shall be considered, depend-
ing on the dynamics of the grains between collisions.

II.A. The unforced system

Let us first address the free-cooling case. With the dynamics specified above, trajecto-
ries are generated and the state of the system is described in terms of the N-particle 
distribution function, ρ tV,N ( ). The evolution equation for this distribution is the gen-
eralization for inelastic collisions of Kac’s equation [23]

∑ρ ρ
∂
∂

=
<t

t
K

N
L tV v v V, , , ,N

i j

i j N( ) ( ) ( )� (3)

where we have introduced the operator

⎡
⎣⎢

⎤
⎦⎥∫ σ σρ

α
ρ= ⋅ −σ

γ
γ+

−L b i j tv v V v V,
1

, 1 , d ,i j N ij N1
1ˆ ˆ( ) ( ) ( ) ( ) ( )ˆ� (4)

and K is a parameter of the model with the only restriction that σ ⋅ γK vijˆ( )  has dimen-
sions of inverse of time (in the hard sphere case it is σ= −K n d 1, where n is the density). 

The operator σ
−b i j, 1( )ˆ  acts on any function of V replacing vi and vj by the precollisional 

velocities, i.e.

= … … …σ
−

− + − +b i j f fV v v v v v v v v, , , , *, , , , *, , , ,i i i j j j N
1

1 1 1 1 1( ) ( ) ( )ˆ� (5)

found from inverting the law (1)–(2)

σ σα
α

= −
+

⋅v v v* 1

2
,i i ijˆ ˆ( )� (6)

http://dx.doi.org/10.1088/1742-5468/2015/11/P11009
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σ σα
α

= +
+

⋅v v v* 1

2
.j j ijˆ ˆ( )� (7)

It can be seen that equation  (3) admits a special solution in which all the time 
dependence in the distribution function is subsumed in the granular temperature, T(t), 
defined as

∫ ∑ ρ=
=

d
NT t

m
v tv V

2
d

2
, .

i

N

i N
1

2( ) ( )� (8)

By dimensional analysis, this means that

⎡
⎣⎢

⎤
⎦⎥

ρ ϕ=t
v t v t

V
V

,
1

,N
H

dN N
H

( )
( ) ( )� (9)

where ⎡⎣ ⎤⎦≡v tH
T t

m

2 1/2
( ) ( )

 is the thermal velocity. In appendix A, a consistent equation for 

ϕN is obtained and the equation for the temperature is analyzed. For γ> 0, the tem-
perature behaves for long times as

⎛
⎝
⎜

⎞
⎠
⎟

γ
≈ ∞

γ−

T t
B

t t
2

, for ,
2/

( )
¯

    →� (10)

where B̄ is a constant. This means that, for γ> 0, the temperature ‘forgets’ the initial 
condition in the long time limit [24, 25]. This important property suggests working in 
the following dimensionless variables

∫= =′ ′γs K t v t
v t

C
V

d , ,
t

0
0

0

( )
( )� (11)

where we have introduced an ‘eective’ thermal velocity (proportional at long times 
to vH)

⎜ ⎟
⎛
⎝

⎞
⎠

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

γ
=

∼ γ−

v t
m

B
t

2

2
,0

1/2
1/

( )� (12)

with 
∼
B  an arbitrary constant. Then, the actual thermal velocity is proportional to the 

eective one in the long time limit. The evolution equation for the distribution function 
in the new variables, φ sC,N ( ),

φ ρ=s v t tC V, , ,N
dN

N0( ) ( ) ( )� (13)

is

∑φ φ φ
∂
∂

= −
∂

∂
⋅

<s
s

N
L s

B
sC c c C

C
C C,

1
, ,

2
, ,N

i j

i j N N( ) ( ) ( ) ( )� (14)

where =
∼

B B K/  is a dimensionless constant. This equation is equivalent to the one of 

an inelastic system (with a collision rule given by equations (1)–(2)) whose particles 
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are accelerated with a force proportional to the velocity, i.e. = c
s

B
i

cd

d 2
i , and is usually 

called Gaussian thermostat.
Let us analyze equation (14) to establish the conditions under which a stationary 

state is reached in the long time limit. General results pertaining to master equa-
tions do apply to the probability distribution, φ sC,N ( ), see e.g. [26]. Let us assume that 

there exists a stationary solution of equation (14), φ CN
st( ), which fulfills

∑ φ φ=
∂

∂
⋅

<N
L

B
c c C

C
C C

1
,

2
.

i j

i j N N
st st( ) ( ) ( )� (15)

Then, we consider a convex-up function h(x) ( ″h x 0( ) ⩾ ), bounded from below and 
defined for x 0⩾ , from which the NH -functional follows as

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫ φ

φ
φ

=s h
s

C C
C

C
d

,
.N N

N

N

st
st

( ) ( )
( )
( )

H� (16)

It is shown in appendix B that

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫
⎬
⎭

∫ ∫ σ σ φ
φ
φ

φ
φ

φ
φ

φ
φ

φ
φ

=
−

⋅

− + −

′

′

′
′

′

′

′

γs

s

N
h

s

h
s

h
s s s

C c C
C

C

C

C

C

C

C

C

C

C

d

d

1

2
d d

,

, , , ,
,

N
N

N

N

N

N

N

N

N

N

N

N

12
st

st

st st st st

ˆ ˆ( ) ( ) ( )
( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

H

�

(17)

where we have introduced the notation = …′ ′ ′C c c c c, , , N1 2 3{ }, and use has been made of 
the invariance of φ sC,N ( ) under the change of labels c ci j↔  for any i and j. As h(x) is 
a convex function, the integrand is negative and NH  decreases monotonically in time. 
On the other hand, as NH  is bounded from below, it must reach at long times a limit 

in which = 0
s

s

d

d
N ( )H

. In this limit, the distribution is φ φ∞ ≡ ∞ sC C, lim ,N s N( ) ( )→  that 

fulfills

σ
φ
φ

φ
φ

∞
=

∞′

′

C

C

C

C
C

, ,
, for all , .N

N

N

N
st st

ˆ
( )

( )
( )

( )
   � (18)

Note that, due to the invariance property of φ sC,N ( ) alluded to above, equation (18) 
is also valid when ′C  is the postcollisional velocity vector for any pair of particles, 
not necessarily the pair 1 and 2. Then, if for any C and U such that >C U2 2 and 

∑ = ∑ == =c u 0i
N

i i
N

i1 1 , there exists a sequence of collisions that links C with U, we can 

conclude that φ φ∞ =C C,N N
st( ) ( ).

This result is important because a stationary state in the s-variable is related to 
a scaling of the form given by equation (9) in the original t-variable. Then, if the 
dynamics of equation (14) is such that, for any initial condition φ C, 0N ( ), the system 
reaches a stationary state in the long time limit, the dynamics of equation (3) will be 
such that, for any initial condition, ρ V, 0N ( ), the system will reach the auto-similar 
regime with a scaling of the form given by equation  (9). Moreover, for γ> 0, this 
holds independently of the auxiliary parameter B. For γ = 0 the situation is dierent, 

http://dx.doi.org/10.1088/1742-5468/2015/11/P11009
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but it suces that there exists one B for which the stationary solution of equa-
tion (14) exists.

II.B. The driven system

We next treat the case in which, between collisions, the grains are heated by a sto-
chastic force modeled by a white noise. This model is referred to as the stochastic 
thermostat model and has been extensively studied in the literature [27–30]8. More 
specifically, the jump moments of the particles’ velocities, β γBi j, ; , , due to the thermostat 
are assumed to verify [31]

ξ δ δ
ξ

δ δ≡
∆ ∆

∆
= +

−
−β γ

β γ
βγ βγ

∆
B

v v

t N
lim

1
1 ,i j

t

i j
ij ij, ; ,

0

, , noise
0
2 0

2⟨ ⟩
( )

→
� (19)

for = …i j N, 1, ,  and β γ = … d, 1, , . We have introduced the notation 
∆ ≡ + ∆ −β β βv v t t v ti i i, , ,( ) ( ), βv ti, ( ) being the β-component of the particle i at time t. 

The parameter ξ0
2 is the amplitude of the noise and … noise⟨ ⟩  denotes the average over 

dierent realizations of the noise. The nondiagonal terms are introduced to conserve 
total momentum. Let us remark that, as discussed in appendix C, if total momentum 
is not conserved, a stationary state is not possible (indeed, the center-of-mass velocity 
follows then a standard Brownian motion, see also [32]). The evolution equation for the 
N-particle distribution function, ρ tV,N ( ), is

∑ρ ρ ρ
∂
∂

= +
∂
∂

|
<t

t
K

N
L t

t
tV v v V V, , , , ,N

i j

i j N N noise( ) ( ) ( ) ( )� (20)

where the first term of the right hand side of the equation gives the collisional contri-
bution (L v v,i j( ) is given by equation (4)), and the second term gives the contribution 
of the thermostat. If the jumps due to the thermostat are small compared with the 
velocity scale in which ρ tV,N ( ) varies, the usual conditions to derive Fokker–Planck 
equations are fulfilled and the thermostat contribution can be approximated by [26]

∑ ∑ρ ρ
∂
∂

| ≈
∂

∂
∂

∂β γ
β γ

β γ= =t
t B

v v
tV V, , ,N

i j

N

i j
i j

Nnoise
, 1 , 1

d

, ; ,
, ,

( ) ( )� (21)

with β γBi j, ; ,  given by equation (19), independently of the specific probability distribu-
tion of the jumps. Then, in this limit, the evolution equation for ρ tV,N ( ) is

∑ρ ρ ξ ρ
∂
∂

= +
<t

t
K

N
L t tV v v V V V, , , , ,N

i j

i j N N0
2( ) ( ) ( ) ( ) ( )T� (22)

where the operator T  is defined as

T ( ) ∑ ∑=
∂
∂

−
−

∂
∂

⋅
∂

∂= <
V

v N v v

1

2

1

1
.

i

N

i i j i j1

2

2� (23)

As in the free-cooling case, it is convenient to work with dimensionless variables. 
We introduce

8 See also, Puglisi [30] for a slight variant of the model.

http://dx.doi.org/10.1088/1742-5468/2015/11/P11009
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⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
ξ

= = =γ
γ+

s Kv t
v

v
K

C
V

, , ,s
s

s
0

2
1

2

� (24)

the latter having dimensions of a velocity. For the sake of readability, similar names 
as for unforced systems have been employed. In these units, the evolution equation for 
the distribution function reads

∑φ φ ξ φ
∂
∂

= +
<s

s
N

L s sC c c C C C,
1

, , , ,N
i j

i j N N
2( ) ( ) ( ) ( ) ( )T� (25)

where ξ =
ξ
γ+Kv

2

s

0
2

2 is the dimensionless amplitude of the noise.

Performing a similar analysis to in the free-cooling case, and under the same hypoth-
esis, it can be shown that the function

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫ φ

φ
φ

=s h
s

C C
C

C
d

,
,N N

N

N

st
st

( ) ( )
( )
( )

H� (26)

decays monotonically in time and that, for any initial condition, a stationary distribu-

tion ρ VN
st( ) is reached in the long time limit.

III. One-particle description

In the previous section, we provided a description at the N-particle level. Here, we con-
sider the ∞N →  limit case, where the problem is expected to admit a closed description 
in terms of the velocity distribution function, f sc,( ),

�φ ≈s f s Nc c, , for 1,N ,1 1 1( ) ( )    � (27)

that we take normalized to unity, where the jth marginal of φN is defined by

∫φ φ… ≡ …+c c c c C, , d d .N j j j N N, 1 1( ) ( )� (28)

Integrating equations (14) and (25) over …c c, , N2  and assuming the chaos property

�φ ≈s f s f s Nc c c c, , , , , for 1,N ,2 1 2 1 2( ) ( ) ( )    � (29)

the homogeneous Boltzmann equation  for the two cases is obtained (resp. in the 
unforced and driven cases)

∫
∂
∂

= −
∂

∂
⋅

s
f s L f s f s

B
f sc c c c c c

c
c c, d , , ,

2
, ,1 2 1 2 1 2

1
1 1( ) ( ) ( ) ( ) ( )� (30)

∫
ξ∂

∂
= +

∂
∂s

f s L f s f s f sc c c c c c
c

c, d , , ,
2

, .1 2 1 2 1 2

2 2

1
2 1( ) ( ) ( ) ( ) ( )� (31)
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It is worth emphasizing that the above ‘chaos’ notion has been introduced by Kac in 
order to formalize the idea of asymptotic independence of particles in the limit ∞N → .

Until now, no Lyapunov functional for equations (30) and (31) has been identified. 
Nevertheless, the analysis made in the previous section at the N-particle level suggests 
the following. Consider a specific example of NH  discussed above. Taking =h x x xlog( ) , 
which is bounded from below by  −e−1 for x 0⩾ , we get

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫ φ

φ
φ

=s s
s

C C
C

C
d , log

,
.N N

N

N
st

( ) ( )
( )
( )

H� (32)

In addition, if we assume that the N-particle distribution factorizes for all times in 
terms of the one-particle probability distribution, i.e.

φ = …s f s f sC c c, , ,N N1( ) ( ) ( )� (33)

and

φ = …f fC c c ,N N
st st

1
st( ) ( ) ( )� (34)

where f st is the stationary solution of the Boltzmann equation, equations (30) or (31), the 
functional NH  becomes extensive and transforms into a functional of the one-particle 
distribution function f sc,( ),

⎡
⎣⎢

⎤
⎦⎥∫=

N
s f s

f s

f
c c

c

c

1
d , log

,
.N st

( ) ( ) ( )
( )

H� (35)

Let us remark that the factorization form given by equation (33) and equation (34) 
should be understood in the sense of equation (29): it can represent a good approxima-
tion at least in the ∞N →  limit. In the elastic limit, the above argument can be com-
pletely justified and it has been shown that

⎡
⎣⎢

⎤
⎦⎥∫=

∞ N
s f s

f s

f
c c

c

c
lim

1
d , log

,
,

N
N st

( ) ( ) ( )
( )→

H� (36)

a property called ‘entropic chaos’. The above limit was first established for a particular 
class of well-prepared time independent sequences of N-particle densities φN by Kac in 
[23] (see also [33]) and more recently for any sequence of solutions to the elastic Kac’s 
equation (3) in [34] (see also [35, 36]). The most important diculty in establishing 
(36) lies in the proof of the convergence

∫ ∫φ…
N

f f f fC c c C c c c
1

d log d logN N1
st

1 1
st

1( ) ( ) ( )  →   ( ) ( )� (37)

that one can deduce from a careful use of an accurate version of the central limit 
theorem. It is worth mentioning that the limit (36) is not the only possible scenario. 
Consider for instance the N-particle McKean–Vlasov model

)( )   ( ( ( )) ( )∑ ∑φ φ φ
∂
∂

= + ∆
= =t

t A t tC C C C, div , ,N
i

N

N i N
i

N

Nc c

1

,

1
i i� (38)
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where the force field term AN,i is obtained from the N-body Hamiltonian function WN 
and two-body Hamiltonian function a by

A W W
N

aC C C c c c, :
1

.N i N N

i j

N

i j

i

N

ic,

, 1 1

2
i) ) )( ( ( ( )∑ ∑= ∇ = − + | |

= =
� (39)

It is clear and well-known that the only positive and normalized stationary state is  

the Gibbs probability measure φN
st given by

∫φ = =− −

Z
e Z eC C:

1
, : d .N

N

W
N

WC Cst N N( ) ) )( (
� (40)

The relative entropy sN ( )H  defined in (32) is still a Lyapunov functional but now, 
under some smoothness and boundedness assumptions on the two-body Hamiltonian 
function a, one can show that the rescaled relative entropy sN ( )H  converges to the free 
energy, namely

H F( ) ⟶ ( ) ( ) ( ) ( ) ( ) ( )
[ ]→

⎡
⎣⎢

⎤
⎦⎥∫ ∫= + −

∞ − −| |N
s s f s

f s

Z e
f s f s ac c

c
c c c c c c

1
: d , log

, 1

2
d d , , .N

N c1
1 2 1 2 1 22

�
(41)

This convergence can be rigorously justified mathematically by (1) using the tech-
niques of [37] to prove the propagation of chaos on any k-marginal for this many-
particle system, (2) using the technique in [34, section 7] to prove the convergence 
of the rescaled relative entropy. We are interested here in a dilute system—a proviso 
necessary for the validity of the Boltzmann description—in which the precise form 
of the law of interaction between the particles is irrelevant, beyond the fact that 
collisions are dissipative. We do not expect a ‘Hamiltonian fingerprint’ in the limit 

∞ Nlim /N N→ H , and we are then led in the next section to conjecture that the relevant 
form is (36).

Note finally the ‘gap’ between the N-particle evolution, where the evolution is linear 
and infinitely many h are admissible in the definition (26), and the mean field limit 

= ∞N  where it is crucial to use the extensivity of the logarithm function (imposing 
=h z z zln( ) ) so that the relative entropy scales like the number of particles and the 

rescaled relative entropy can converge to an eective relative entropy for the limited 
nonlinear Boltzmann equation.

IV. The conjectured Lyapunov function

We are then in a position to define our Lyapunov-candidate functional as the Kullback–
Leibler distance (also called relative entropy) [38] between the time dependent velocity 
distribution, f sc,( ), and its long time limit, f cst( ),

⎡
⎣⎢

⎤
⎦⎥∫=t f t

f t

f
c c

c

c
d , log

,
.

st
( ) ( ) ( )

( )
H� (42)
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A convexity argument shows that this quantity is positive [38], and by construc-
tion, it is expected to vanish at long times. Our central conjecture is that it does 
so monotonously in time, i.e. <td /d 0H . It is also important to emphasize here 

that with elastic collisions for which the velocity distribution thermalizes and 

evolves towards ∝ −f cc expst 2( ) ( ), the above distance t( )H  reduces to the original 
Boltzmann H(t) functional alluded to above, up to an irrelevant constant. It should 
also be emphasized that equation (42) is invariant under change of variable ψc c→ ( ) 
where ψ is some invertible function, an important requirement for an entropy-like 
functional [41].

We first sketch a heuristic argument and then perform numerical simulations. The 
goal is to prove that the relative entropy production is non-negative

f L f f fc c c c c c c
c

c: d d , 1 d 01 2 1 2 1 2 1
1

1

2

2
D ( ) ( ) ( ) ( ) ( ) ( ) ⩾∫ ∫α= − − −

∂
∂

α α� (43)

where we keep track of the inelasticity in αL , defined as above. Then, assuming that 
evolution nonlinear equation propagates strong regularity and decay and arguing with-
out full rigor on the functional spaces level, we search for minimisers critical points f  * 
of αD  with strong regularity and decay. We then have heuristically

f f O* * 11D D( ) ( ) ( )α∼ + −α� (44)

for α close to 1, and due to entropy–entropy production estimates, we deduce that 

α α= + − = + −αf f O f O* 1 11
st st( ) ( ), see the argument in [17]. Finally by studying the 

Euler–Lagrange equation satisfied by the minimisers f  * and performing a perturbative 

argument in the α−O 1( ) neighborhood, we prove that = αf f* st is the unique minimizer 

locally. The previous argument is perturbative in dissipation. Numerical data suggest, 
however, that the monotonicity of H  goes beyond the quasi-elastic range.

We have implemented three complementary and independent simulation techniques 
to assess and illustrate our central statement that <td /d 0H : a spectral approach, 
the direct simulation Monte Carlo (DSMC) technique and molecular dynamics (MD) 
simulations. We now discuss each method in more detail.

	•	 In the spectral method the nonlinear Boltzmann equation (30) is directly solved. 

The velocity distribution is truncated, Fourier transformed (assuming periodic 

boundary conditions), and the evolution of each Fourier mode fk̂ is subsequently 

computed from e.g. a Runge–Kutta scheme. In the driven case, the evolution is 

given by

∑ β β= − −′
+ =

=−

f t f t f t Ck f t ,k
l m k

M

l m l m m m k, ,
2

l m M,

ˆ ( ) ˆ( ) ˆ ( )( ˆ ˆ ) ˆ( )

		 where the so-called kernel modes βl m,
ˆ  depend only on γ and α, and can be precom-

puted and stored before solving the equation, C being a nonnegative constant. 

This method was first derived in [39] for the elastic case, and then extended to 
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the inelastic case in [40]. It is deterministic and spectrally accurate by nature, 

preserves mass exactly, momentum and temperatures spectrally and costs O(M2) 

operations. It is moreover valid for any values of α∈ 0, 1( ].

	•	 The DSMC method is widely used in the present context, in aeronautics, and in 

microfluidics [42]. N particles follow a Kac’s walk in velocity space and in the 

limit of large N, the corresponding first marginal, f sc,( ), evolves according to 

the Boltzmann equation [37]. The method is Monte Carlo in spirit, and thus of a 

stochastic nature.

	•	 In the MD simulations the exact equations  of motion are integrated, starting 
from a given initial configuration of N grains in a finite simulation box of volume, 
V, with periodic boundary conditions [43]. This method does not rely on the 
putative validity of a kinetic description and by comparing to the outcome of 
DSMC, provides a stringent test of the theory and predictions under scrutiny. In 
particular, the spatial dependence is fully accounted for within MD—unlike in the 
DSMC approach used where spatial homogeneity is enforced from the outset—
and does not rely on the molecular chaos assumption. If ∞N →  while enforcing 
the low-density limit (or more precisely, in Grad’s limit) the first marginal is 
expected to fulfill the Boltzmann equation.

In the simulations, the evolution of the one-particle distribution function has been 
measured for the two models, i.e. the Gaussian and stochastic thermostats, using 
dierent values of the inelasticity and starting with dierent initial velocity distribu-
tions. With that, the functional H  can be computed through equation (42), where the 
knowledge of the late time distribution f st is required. Hence, H  cannot be obtained 
‘on the wing’, but is computed after f st has been measured in the simulations. We have 
taken the grain’s mass, m, as the unit of mass and the initial temperature, T(0), as 
the unit of temperature. In the MD simulations the unit of length is the diameter of 
the particle, σ. We always considered a two-dimensional system of N  =  1000 disks. The 
spectral method is used in two dimensions of the velocity space, with 64 modes in each 
space direction. It is known that such a number of modes gives a very good accuracy, 
thanks to the spectral convergence of the method. The Gaussian thermostat case has 
been studied by DSMC and MD, while the stochastic thermostat has been addressed 
via DSMC and spectral methods9.

Figure 1 displays DSMC results for a system with dissipation parameter α = 0.90 
heated by the Gaussian thermostat with B chosen to have unit stationary temperature. 
The results have been averaged over 105 realizations and the initial distribution has 
been taken as asymmetric with three peaks:

δ δ δ= − + − + −f v v u v u v u, 0
3

6

2

6

1

6
,1 2 3( ) ( ) ( ) ( )� (45)

9 Molecular dynamics simulations are more demanding in the driven case, particularly so if small densities are 
considered.
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with ⎡⎣ ⎤⎦=u 1, 1
T

m2
1

3

0 1/2
( )( )

, = −u u31 2, and =u u53 2. In the left side of the figure, the dis-

tribution function for vx, defined as ∫=f t v f tv v, d ,x x y( ) ( ), has been plotted for dierent 
values of the number of collisions per particle, τ. Clearly, the behavior of t( )H  on the 
right hand side is compatible with an asymptotic vanishing for ∞t → , which simply 
indicates that f tends towards f st. More interestingly, H  is nonincreasing, from the 
shortest times to the largest ones one can reach in the simulations.

In figure 2, a comparison between MD and DSMC results is shown for a system 
with α = 0.80. The initial distribution is the same asymmetric distribution as in the 
previous case and, again, B has been chosen to have unit stationary temperature. The 
results have been averaged over ×5 103 realizations in the two kinds of simulations. 
The density in the MD simulations is σ= −n 0.005 2, which corresponds to a rather 
dilute system. The excellent agreement between MD and DSMC is important, not 
only because it again points to the monotonicity of t( )H  but also because the MD 
algorithm provides a reference benchmark (‘true dynamics’), which does not rely on 
the hypothesis leading to the Boltzmann equation, and in particular does not a priori 
assume the system to be homogeneous. It should be mentioned though that the param-
eters chosen for MD are such that the system remains in a spatially homogeneous state 
for all times (see e.g. the discussion in [44] for the free cooling regime). Let us mention 
that we have observed the same qualitative features for a large gamut of initial condi-
tions (symmetric around the velocity origin or asymmetric) and dierent values of the 
inelasticity in the whole range, α< <0 1.

In figure 3, DSMC results are shown for a system heated by the stochastic ther-
mostat. We have considered two values of inelasticity, α = 0.9 and α = 0.95, with an 
amplitude of noise, ξ, such that the stationary temperature is 8.80 T(0) for α = 0.9 and 
17.13 T(0) for α = 0.95. In the two cases, we have started with the same initial flat 

Figure 1.  Free cooling. (Left) DSMC results for f x with an initial asymmetric 
velocity distribution made up of three sharp peaks. The parameters are α = 0.9 and 
N  =  1000 and the results have been averaged over 105 realizations. The distribution 
is plotted for dierent values of the number of collisions per particle, τ. The black 
solid line corresponds to the initial distribution and the bell-shaped red solid line 
to the distribution at the end of the simulation ( �τ 14). Note that the y-scale is 
logarithmic to better probe the low probability region. (Right) Corresponding 
evolution of ( )H t . The inset shows the same data on a linear-log scale.
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distribution, in which all the velocities have the same probability in a square centered 
in the origin in the velocity space

( )   [ ] [ ]
=

∈ − ∈ −
⎧
⎨
⎪

⎩⎪
f w

v w w v w w
v, 0

1

4
, if , and ,

0, otherwise

x y2� (46)

with ⎡⎣ ⎤⎦=w
T

m

6 0 1/2( )
. The results have been averaged over 105 trajectories. Clearly, as 

in the previous case, the functional H  decays monotonically for all times. Again, as 
in the Gaussian thermostat case, the same qualitative behavior is obtained for other 
initial conditions and values of the inelasticity.

Figure 2.  Free cooling. Evolution of ( )H t  as a function of the number of collisions 
per particle for MD and DSMC simulations, for an asymmetric initial velocity 
distribution. Here α = 0.8, N  =  1000 and the results have been averaged over 

×5 103 realizations. The inset shows the same data on a linear-log scale, to 
emphasize the long time behavior.
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Figure 3.  (Left) DSMC results of the time evolution of ( )H τ  for the stochastic 
thermostat for α = 0.9, starting with a flat distribution. (Right) The same but for 
α = 0.95.
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Finally, we present in figure  4 the evolution of H  for small normal restitution 
coecients, namely α = 0.1 (almost sticky particles) and α = 0.25, in the stochastic 
thermostat case. The spectral scheme is used for these simulations. We show our results 
for both the asymmetric distribution (45) composed of three peaks (left) and for the 
flat distribution (right). As in the other simulations, we observe in all these cases a 
monotone decay of the entropy functional H . Thanks to the accuracy of the spectral 
scheme, and owing to its deterministic nature, we can observe this decay up to machine 
precision. Although it may be due to numerical artifacts (this behavior can also be 
observed in the elastic case α = 1), this decay seems to follow two exponential regimes, 
a very fast one in short time followed by a slower one in longer time. Nevertheless, 
these decays are always exponential.

All the simulation results point in the same direction: the functional H  defined by 
equation (42) can be a good Lyapunov functional for the free-cooling case (Gaussian 
thermostat) and for the stochastic thermostat. It is worth emphasizing here that con-

sidering the naive functional of the type ∫ f flog  instead of the Kullback–Leibler dis-

tance (42) may lead to non-monotonic behaviour, as shown in [21].

V. Conclusions

In this paper, we have presented strong hints that the functional given by equation (42) 
can play the role of a Lyapunov functional in the context of a dissipative granular gas: 
it decays monotonically in time, tending to zero in the late time nonequilibrium steady 
state. These results, in agreement with those of [21], have been shown by three dierent 
kinds of simulation methods, for a wide class of initial conditions and a wide range of 
inelasticities, α< <0 1. Our functional—which takes the form of a relative entropy, 
or Kullback–Leibler distance—reduces to Boltzmann’s original H in the case of elastic 
interactions. Its very form can be directly inspired from information theory, where the 
Kullback–Leibler distance plays a prominent role [38].

Figure 4.  (Left) Time evolution of the entropy for the nonlinear Boltzmann 
equation with stochastic thermostat, solved with the spectral scheme (M  =  64), 
for α = 0.25 (solid line) and α = 0.1 (dotted line), starting with the asymmetric, 
three sharp peaks. (Right) The same but for the flat initial distribution.
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It should be noted that the asymptotic steady state fst enters the definition (42), 
so that we cannot deduce the form of the nonequilibrium steady or scaling solution 
from our functional. This is at variance with the reversible dynamics case (elastic col-
lisions, corresponding to α = 1 above), and is the price for losing the energy conserva-
tion law. We emphasize that we have not been able to prove analytically our central 
result, which requires us to work at Boltzmann equation level. The situation is simpler 
at N-body level, where a counterpart of the H-theorem can be shown. We neverthe-
less believe our result is conceptually important; monotonicity of t( )H  with time is a 
strong statement, the derivation of which has been the focus of some eort in the past.

In the particular free cooling case, we have shown that the N-particle velocity dis-
tribution function reaches an auto-similar regime in which all its time dependence is 
encoded in the instantaneous temperature (a similar scaling has already been used in 
the context of the Liouville equation (with spatial dependence) [20]). A comparable 
analysis can be put forward for mixtures, binary or polydisperse, where the existence of 
a scaling solution implies the coincidence of the dierent cooling rates.

Appendix A. Evolution equation for the temperature in the free-cooling case

Assuming the scaling form of the main text, equation (9), the evolution equation for the 
temperature can be straightforwardly obtained by taking the second velocity moment 
in equation (3). The result is

= −
γ

+T t

t
BT t

d

d
,2

1( ) ¯ ( )� (A.1)

where we have introduced the time-independent coecient

⎜ ⎟
⎛
⎝

⎞
⎠ α= −

γ γ+

B
KA c

d m4

2
1 ,12

2 /2
2¯ ⟨ ⟩

( )� (A.2)

with

∫ ∫ ∫σσ ϕ= =γ γ γ+ + +A c cc c c cd , d d , .x
2

12
2

1 2 12
2

2 1 2ˆ ˆ ⟨ ⟩ ( )� (A.3)

The function ϕ2 is just the integrated scaled distribution, ∫ ∫ϕ ϕ= …c c c c C, d d N N2 1 2 3( ) ( ). 
Equation (A.1) can be readily integrated, leading to

⎡
⎣
⎢

⎤
⎦
⎥

γ
γ= + >

γ

γ−

T t
T

B
t

1

0 2
, for 0,

/2

2

( )
( )

¯
 � (A.4)

and

γ= =−T t T e0 for 0.Bt( ) ( )  ¯
� (A.5)

Then, for γ> 0 the temperature ‘forgets’ the initial condition in the long time limit and 
behaves as
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T t
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t t
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, for .
2/

( )
¯

  →� (A.6)

We point out now that the scaling given by equation (9) is compatible with Kac’s 
equation, equation (3). By substituting equation (9) into equation (3), the following 
equation for ϕN is obtained

∑ϕ ϕ
∂

∂
⋅ + =γ+

<Kv

v t

t N
L

C
C C c c C

1 d

d

1
, 0,

H

H
N

i j

i j N1

( ) ( ) ( ) ( )� (A.7)

where = v tC V/ H ( ). As a consequence of equation (A.1), the term γ+Kv

v t

t

1 d

dH

H
1

( )
 is time-

independent, and thus, equation (A.7) is consistent.

Appendix B. Evaluation of ss

ss

dd

dd
NNH ( )

Before evaluating 
s

s

d

d
N ( )H

, let us note that equation  (14) can be written as a master 

equation

∫ ∫φ φ φ
∂
∂

= | − |
s

s s sC U C U U U U C C, d , d , ,N N N( ) ( ) ( ) ( ) ( )W W� (B.1)

with the transition probabilities per unit time, |U C( )W , given by

| = | + |U C U C U C ,C T( ) ( ) ( )W W W� (B.2)

where

∫∑ σ σ δ δ δ| = ⋅ − − Π −′ ′γ
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is the contribution due to collision and

δ| = − ⋅
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B
U C C

U
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2
,T ( ) ( )W� (B.4)

the contribution of the thermostat.
Following the same steps as van Kampen [26], it is obtained that

s

s
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h x s h x s

C U C U U U C C
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φ
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,
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( )
( )� (B.6)

It can be seen that the contribution coming from the thermostat vanishes. Indeed,
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The collisional counterpart can be written as
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−
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γ
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where we have introduced the notation = …′ ′ ′C c c c c, , , , N1 2 3{ } and we have used that, 
due to the invariance of φ sC,N ( ) under the change of labels c ci j↔  for any i and j, the 
N(N  −  1)/2 collisional terms are equal. By substituting equations (B.7) and (B.8) into 
(B.5), the expression of the main text is obtained.

Appendix C. Consistency of Kac’s equation in the stochastic thermostat case

In this appendix, it is shown that the conservation of the total momentum assumed 
by the thermostat is essential to ensure that equation  (22) be compatible with the 
existence of a stationary state. We assume that a stationary solution of equation (22) 

exists, ρ VN
st( ). It then fulfills

∑ ρ ξ ρ+ =
<

K

N
L Tv v V V V, 0.

i j

i j N N
st

0
2 st( ) ( ) ( ) ( )� (C.1)

Let us multiply the equation by v1
2 and integrate. The collisional contribution is
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where use has been made of

σα
− + = −

−
⋅σb v v v1

1

2
.1

2
2
2

2

12
2ˆ( )( ) ( )ˆ� (C.3)

The thermostat contribution is

∫ ∫ξ ρ
ξ

ρ ξ=
∂
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=v T
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vv V V v Vd
2

d d ,N N0
2
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where the cross-terms do not contribute. The obtained equation is

∫ ∫ σ σα ρ ξ
−

− ⋅ =γ+K N

N
v V v

1

4
1 d d d .N

2 st
12

2
0
2ˆ ˆ( ) ( ) ( ) ( )� (C.5)

Keeping in mind the above ‘steady-state constraint’, let us now multiply equation (C.1) 
by ⋅v v1 2 and integrate. The collisional contribution is
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where it has been used that

σα
− ⋅ =

−
⋅σb v v v1

1

4
.1 2

2

12
2ˆ( ) ( )ˆ� (C.7)

From the conservation of total momentum in a collision, we further have 
− + =σb v v1 01 2

2( )( )ˆ , so that

− ⋅ = − − +σ σb b v vv v1
1

2
1 ,1 2 1

2
2
2( ) ( )( )ˆ ˆ� (C.8)

from equations (C.3) and (C.7). The thermostat contribution is

∫

∫

ξ ρ

ξ
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1 2
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1 2
1 2

0
2
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(C.9)

where only the cross-terms contribute. The obtained equation is equivalent to equa-
tion (C.5) but, as indicated above, only because of the presence of the cross terms (sec-
ond term on the right hand side of equation (19)). In other words, it is essential that 
the thermostat conserves total momentum, otherwise the center-of-mass of the system 
undergoes a Brownian motion in velocity space, incompatible with the existence of a 
steady state [32].

References

	 [1]	 Boltzmann L 1872 Wiener Berichte 66 275 (also paper 23 Hasenöhrl F (ed) 1909 Wissenschaftliche Abhand-
lungen vol I (Leipzig: Barth); 1969 reissued (New York: Chelsea))

	 [2]	 Villani C 2002 A review of mathematical topics in collisional kinetic theory Handbook of Mathematical Fluid 
Dynamics ed S Friedlander and D Serre (Amsterdam: Elsevier)

	 [3]	 Cercignani C and Gabetta E (ed) 2007 Transport Phenomena and Kinetic Theory (Cambridge, MA: Birkhäuser 
Boston)

	 [4]	 Bellomo N 2007 Modelling Complex Living Systems: a Kinetic Theory and Stochastic Game Approach (Model-
ling and Simulation in Science, Engineering and Technology) (Cambridge, MA: Birkhäuser Boston)

	 [5]	 Boltzmann L 1995 Lectures on Gas Theory (New York: Dover) (reprint of the 1896–1898 edition. Reprinted 
by Dover Publications)

http://dx.doi.org/10.1088/1742-5468/2015/11/P11009


Towards an H-theorem for granular gases

20doi:10.1088/1742-5468/2015/11/P11009

J. S
tat. M

ech. (2015) P
11009

	 [6]	 Cercignani C 1988 The Boltzmann Equation and its Applications (Berlin: Springer)
	 [7]	 Jaynes E T 1971 Phys. Rev. A 4 747
		  Garrido P L, Goldstein S and Lebowitz J L 2004 Phys. Rev. Lett. 92 050602
	 [8]	 Brush S G 1976 The Kind of Motion We Call Heat (Amsterdam: North Holland)
	 [9]	 Cercignani C 1998 Ludwig Boltzmann, The Man Who Trusted Atoms (Oxford: Oxford University Press)
	[10]	 Lebowitz J L 1999 Rev. Mod. Phys. 71 S346
	[11]	 Goldhirsch I 2003 Annu. Rev. Fluid Mech. 35 267
	[12]	 Brilliantov N and Poschel T 2004 Kinetic Theory of Granular Gases (Oxford: Oxford University Press)
	[13]	 Villani C 2006 J. Stat. Phys. 124 781
	[14]	 Bena I, Coppex F, Droz M, Visco P, Trizac E and van Wijland F 2006 Physica A 370 179
	[15]	 Barrat A, Trizac E and Ernst M H 2005 J. Phys.: Condens. Matter 17 S2429
	[16]	 Goldshtein A and Shapiro M 1995 J. Fluid Mech. 282 75
	[17]	 Mischler S, Mouhot C and Rodriguez Ricard M 2006 J. Stat. Phys. 124 2–4
		  Mischler S and Mouhot C 2006 J. Stat. Phys. 124 2–4
		  Mischler S and Mouhot C 2009 Commun. Math. Phys. 288 2
	[18]	 Bobylev A V and Cercignani C 2003 J. Stat. Phys. 110 1–2
		  Bobylev A V and Cercignani C 2003 J. Stat. Phys. 111 1–2
	[19]	 Mischler S and Mouhot C 2009 Discrete Contin. Dyn. Syst. 24 1
	[20]	 Brey J J, Dufty J W and Santos A 1997 J. Stat. Phys. 87 1051
	[21]	 Marconi U M B, Puglisi A and Vulpiani A 2013 J. Stat. Mech. P08003
	[22]	 Ernst M H, Trizac E and Barrat A 2006 J. Stat. Phys. 124 549
	[23]	 Kac M 1956 Foundations of kinetic theory Proc. 3rd Berkeley Symp. Mathematics Statistics Probability vol 3 

(Berkeley, CA: University of California Press) p 171
	[24]	 Lutsko J F 2001 Phys. Rev. E 63 061211
	[25]	 Brey J J, Ruiz-Montero M J and Moreno F 2004 Phys. Rev. E 69 051303
	[26]	 van Kampen N G 2007 Stochastic Processes in Physics and Chemistry (Amsterdam: North-Holland)
	[27]	 Montanero J M and Santos A 2000 Granular Matter 2 53
	[28]	 van Noije T P C and Ernst M H 1998 Granular Matter 1 57
	[29]	 van Noije T P C, Ernst M H, Trizac E and Pagonabarraga I 1999 Phys. Rev. E 59 4326
	[30]	 Puglisi A, Loreto V, Marconi U M B, Petri A and Vulpiani A 1998 Phys. Rev. Lett. 81 3848
	[31]	 García de Soria M I, Maynar P and Trizac E 2009 Mol. Phys. 107 383
	[32]	 Prasad V V, Sabhapandit S and Dhar A 2013 Europhys. Lett. 104 54003
	[33]	 Carlen E, Carvalho M C, Le Roux J, Loss M and Villani C 2010 Kinet. Relat. Models 3 1
	[34]	 Mischler S and Mouhot C 2013 Inventory Math. 193 1
	[35]	 Hauray M and Mischler S 2014 J. Funct. Anal. 266 10
	[36]	 Carrapatoso K 2015 Ann. Inst. Henri Poincaré Probab. Stat. 51 993
	[37]	 Mischler S, Mouhot C and Wennberg B 2015 Probab. Theory Relat. Fields 161 1–2
	[38]	 Cover T M and Thomas J M 2006 Elements of Information Theory 2nd edn (New York: Wiley)
	[39]	 Pareschi L and Perthame B 1996 Transp. Theory Stat. Phys. 25 369
	[40]	 Filbet F, Pareschi L and Toscani G 2005 J. Comput. Phys. 202 216
	[41]	 Maynar P and Trizac E 2011 Phys. Rev. Lett. 106 160603
	[42]	 Bird G A 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford: Claredon)
	[43]	 Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Bristol: Oxford Science Publications)
	[44]	 McNamara S 1993 Phys. Fluids A 5 3056
		  Goldhirsch I, Tan M-L and Zanetti G 1993 J. Sci. Comput. 8 1
		  Brey J J, Ruiz-Montero M J and Cubero D 1996 Phys. Rev. E 54 3664
		  Deltour P and Barrat J-L 1997 J. Phys. 17 137
	[45]	 Shannon C E 1948 Bell Syst. Tech. J. 27 379
		  Shannon C E 1948 Bell Syst. Tech. J. 27 623
	[46]	 Villani C 2008 H-theorem and beyond: Boltzmann’s entropy in today’s mathematics Boltzmann’s Legacy (ESI 

Lecture Mathematical Physics) ed G Gallavotti et al (Zürich: European Mathematical Society) pp 129–43
	[47]	 Apenko S M 2013 Phys. Rev. E 87 024101

	[48]	 Guéry-Odelin D, Muga J G, Ruiz Montero M J and Trizac E 2014 Phys. Rev. Lett. 112 180602

http://dx.doi.org/10.1088/1742-5468/2015/11/P11009
http://dx.doi.org/10.1103/PhysRevA.4.747
http://dx.doi.org/10.1103/PhysRevA.4.747
http://dx.doi.org/10.1103/physrevlett.92.050602
http://dx.doi.org/10.1103/physrevlett.92.050602
http://dx.doi.org/10.1103/RevModPhys.71.S346
http://dx.doi.org/10.1103/RevModPhys.71.S346
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161114
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161114
http://dx.doi.org/10.1007/s10955-006-9038-6
http://dx.doi.org/10.1007/s10955-006-9038-6
http://dx.doi.org/10.1016/j.physa.2006.03.009
http://dx.doi.org/10.1016/j.physa.2006.03.009
http://dx.doi.org/10.1088/0953-8984/17/24/004
http://dx.doi.org/10.1088/0953-8984/17/24/004
http://dx.doi.org/10.1017/S0022112095000048
http://dx.doi.org/10.1017/S0022112095000048
http://dx.doi.org/10.1007/s10955-006-9096-9
http://dx.doi.org/10.1007/s10955-006-9096-9
http://dx.doi.org/10.1007/s10955-006-9096-9
http://dx.doi.org/10.1007/s10955-006-9097-8
http://dx.doi.org/10.1007/s10955-006-9097-8
http://dx.doi.org/10.1007/s10955-006-9097-8
http://dx.doi.org/10.1007/s00220-009-0773-9
http://dx.doi.org/10.1007/s00220-009-0773-9
http://dx.doi.org/10.1023/A:1021069209656
http://dx.doi.org/10.1023/A:1021069209656
http://dx.doi.org/10.1023/A:1021069209656
http://dx.doi.org/10.1023/a:1021031031038
http://dx.doi.org/10.1023/a:1021031031038
http://dx.doi.org/10.1023/a:1021031031038
http://dx.doi.org/10.3934/dcds.2009.24.1
http://dx.doi.org/10.3934/dcds.2009.24.1
http://dx.doi.org/10.1007/BF02181270
http://dx.doi.org/10.1007/BF02181270
http://dx.doi.org/10.1088/1742-5468/2013/08/P08003
http://dx.doi.org/10.1007/s10955-006-9062-6
http://dx.doi.org/10.1007/s10955-006-9062-6
http://dx.doi.org/10.1103/PhysRevE.63.061211
http://dx.doi.org/10.1103/PhysRevE.63.061211
http://dx.doi.org/10.1103/PhysRevE.69.051303
http://dx.doi.org/10.1103/PhysRevE.69.051303
http://dx.doi.org/10.1007/s100350050035
http://dx.doi.org/10.1007/s100350050035
http://dx.doi.org/10.1007/s100350050009
http://dx.doi.org/10.1007/s100350050009
http://dx.doi.org/10.1103/PhysRevE.59.4326
http://dx.doi.org/10.1103/PhysRevE.59.4326
http://dx.doi.org/10.1103/PhysRevLett.81.3848
http://dx.doi.org/10.1103/PhysRevLett.81.3848
http://dx.doi.org/10.1080/00268970902794842
http://dx.doi.org/10.1080/00268970902794842
http://dx.doi.org/10.1209/0295-5075/104/54003
http://dx.doi.org/10.1209/0295-5075/104/54003
http://dx.doi.org/10.3934/krm.2010.3.1
http://dx.doi.org/10.3934/krm.2010.3.1
http://dx.doi.org/10.1007/s00222-012-0422-3
http://dx.doi.org/10.1007/s00222-012-0422-3
http://dx.doi.org/10.1016/j.jfa.2014.02.030
http://dx.doi.org/10.1016/j.jfa.2014.02.030
http://dx.doi.org/10.1214/14-AIHP612
http://dx.doi.org/10.1214/14-AIHP612
http://dx.doi.org/10.1007/s00440-013-0542-8
http://dx.doi.org/10.1007/s00440-013-0542-8
http://dx.doi.org/10.1007/s00440-013-0542-8
http://dx.doi.org/10.1080/00411459608220707
http://dx.doi.org/10.1080/00411459608220707
http://dx.doi.org/10.1016/j.jcp.2004.06.023
http://dx.doi.org/10.1016/j.jcp.2004.06.023
http://dx.doi.org/10.1103/PhysRevLett.106.160603
http://dx.doi.org/10.1103/PhysRevLett.106.160603
http://dx.doi.org/10.1063/1.858716
http://dx.doi.org/10.1063/1.858716
http://dx.doi.org/10.1007/bf01060830
http://dx.doi.org/10.1007/bf01060830
http://dx.doi.org/10.1103/physreve.54.3664
http://dx.doi.org/10.1103/physreve.54.3664
http://dx.doi.org/10.1051/jp1:1997130
http://dx.doi.org/10.1051/jp1:1997130
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://dx.doi.org/10.1103/PhysRevE.87.024101
http://dx.doi.org/10.1103/PhysRevE.87.024101
http://dx.doi.org/10.1103/PhysRevLett.112.180602
http://dx.doi.org/10.1103/PhysRevLett.112.180602

