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Memory effect in uniformly heated granular gases
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We evidence a Kovacs-like memory effect in a uniformly driven granular gas. A system of inelastic hard
particles, in the low density limit, can reach a nonequilibrium steady state when properly forced. By following
a certain protocol for the drive time dependence, we prepare the gas in a state where the granular temperature
coincides with its long time value. The temperature subsequently does not remain constant but exhibits a
nonmonotonic evolution with either a maximum or a minimum, depending on the dissipation and on the protocol.
We present a theoretical analysis of this memory effect at Boltzmann-Fokker-Planck equation level and show
that when dissipation exceeds a threshold, the response can be called anomalous. We find excellent agreement
between the analytical predictions and direct Monte Carlo simulations.
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I. INTRODUCTION

A granular material is a system comprising a large number
of particles of macroscopic size, so that the collisions between
them are inelastic and mechanical energy is not conserved. As a
consequence, the usual thermodynamical framework cannot be
directly applied to these systems. Typically, the energy needed
to move a grain by one diameter is many orders of magnitude
larger than the thermal energy of the grain at room temperature,
which can be considered irrelevant for all practical purposes.
On the other hand, the concept of granular temperature is
often used in the literature; it is nothing but a measure of the
velocity fluctuations in the system, without being connected
to any notion of thermal equilibrium [1,2].

We focus here on a low density granular system, which
is usually called a granular gas [3,4]. If no energy is input
into the system, it freely cools (in the sense that its granular
temperature monotonically decreases) and may end up in the
homogeneous cooling state [5–7], provided instabilities are
circumvented by the choice of a small enough system. The
time dependence of the system can then solely be encoded
in the granular temperature, which in turn verifies Haff’s law
[8]. On the other hand, if there is some mechanism that feeds
energy into the system, it eventually reaches a nonequilibrium
steady state in which energy input by the thermostat balances,
on average, the energy loss due to collisions. To the best of
our knowledge, although this kind of thermostated or heated
granular fluid has been extensively investigated [7,9–18], no
attention has been paid to the possible existence of memory
effects. On the other hand, in other experiments with granular
matter like compaction processes, memory effects have been
analyzed both experimentally and theoretically [19–24]. They
have shown that, in general, the evolution of a compacting
granular system depends not only on the instantaneous value
of its packing fraction but also on its previous history.

A classic experiment in this context is the one performed by
Kovacs 50 years ago [25,26]. A sample of polyvinyl acetate
was equilibrated by putting it in a thermal bath at a high
temperature T0, and then it was rapidly quenched to a low
temperature T1. At this low temperature, it relaxed for a
given waiting timetw. At time t = tw, the bath temperature
was suddenly raised to an intermediate temperature T , T0 >

T > T1, such that the instantaneous value of the polymer
volume at t = tw was equal to its equilibrium value at T .
The behavior of the system for t > tw was quite complex:
The volume did not remain constant but increased at first,
passing through a maximum, and only relaxed to equilibrium
for longer times. As the pressure P was kept fixed during
the whole process, the observed behavior means that the
knowledge of the state variables (P,V,T ) does not suffice
to completely characterize the state of the system. The system
evolution from an initial state with given values of (P,V,T )
depends on the previous thermal history. This behavior is
sometimes referred to in the literature as the Kovacs hump,
and it has been extensively studied in glassy and other
complex systems [21,27–34]. In many of these works, the
physical quantity displaying the Kovacs hump is the energy
instead of the volume. In connection with the work presented
here, it should be emphasized that the granular temperature
is essentially the internal energy of the granular gas. We
refer to the driving program in which T1 < T < T0 as the
“cooling” protocol. Conversely, a “heating” protocol in which
the temperature jumps are reversed and T1 > T > T0 has been
recently considered [33]. Within this scheme, the relevant
physical quantity, typically the volume or the energy, displays
a minimum instead of a maximum.

First, it is important to stress that a relevant question is the
number and type of variables characterizing the macroscopic
state of granular gases. In the homogeneous cooling state
[5–7] and also in the Gaussian thermostated case [11,35,36],
the granular temperature suffices. For other energy injection
mechanisms, like the stochastic thermostat, there is some
evidence that additional variables must be taken into account:
This uniformly driven granular gas evolves to a hydrodynamic
solution (β state) of the kinetic equation [16,17], over which
the granular temperature is a monotonic function of time. In
addition, the granular temperature and the driving intensity
characterize the β state completely, a behavior that may lead
to the conclusion that no Kovacs hump should be expected.
We show here that this speculative conclusion is flawed: The
Kovacs effect is indeed present in driven granular gasses, and
moreover, it changes sign with inelasticity.

In light of the discussion above, it seems worthwhile to
investigate the possible existence of memory effects in driven
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granular gases. The steady value of the granular temperature
is a certain function of the driving intensity, which is the
externally controlled parameter in this case. Thus, the granular
temperature plays the role of the volume in the Kovacs
experiment, while the intensity of the driving is the analog
of the bath temperature: We may start from the stationary
state corresponding to a high value of the driving and let
the system relax to a new steady state by rapidly quenching
the driving to a low value. This relaxation is subsequently
interrupted after a waiting time tw, and the driving is readjusted
to an intermediate value, whose corresponding steady granular
temperature equals its instantaneous value at the waiting
time. The existence or nonexistence of a Kovacs hump
in this program undoubtedly answers whether the granular
temperature, together with the driving intensity, thoroughly
characterizes or not the state of the heated granular system.

In this paper, we investigate the existence of such a
hump in the granular temperature when the above sketched
stepwise driving program, à la Kovacs, is implemented in an
homogeneously driven granular gas. We do this analysis both
in the usual cooling protocol (by decreasing the driving from
its initial value) and for the heating protocol (by increasing
the driving from its initial value). In both cases, we show
that the granular temperature indeed displays this Kovacs
hump, thus proving that the granular temperature does not
uniquely characterize the state of the granular system. This is in
agreement with recent investigations in the so-called universal
reference state [16], which plays the main role in the derivation
of linear hydrodynamics for driven granular gases [17]. How-
ever, it will appear that an additional quantity should be kept
in the dynamical description, measuring non-Gaussianities.
Interestingly, there is a value of the restitution coefficient for
which the sign of the hump reverses. For the cooling (heating)
protocol, while the granular temperature has a maximum
(minimum) for high enough restitution coefficient, that is,
small inelasticities, it shows a minimum (maximum) when
the restitution coefficient is smaller than a critical one, that
is, high inelasticities. The theoretical results, obtained from
the Boltzmann-Fokker-Planck equation by (i) considering the
first Sonine approximation and (ii) neglecting nonlinear terms
in the excess kurtosis, are compared to direct Monte Carlo
simulations thereof, and excellent agreement is found. It is
also shown that the expression of the Kovacs hump so obtained
tends to the universal reference state [16] for very long times.

The plan of this paper is as follows. In Sec. II, we introduce
our model and summarize some of the previous results that
are relevant for the work presented here. In particular, we
write the evolution equations for both the granular temperature
and the excess kurtosis of the velocity distribution function.
We put forward a Kovacs-like program for the driving in
Sec. III and obtain approximate analytical expressions for
the time evolution of both the granular temperature and the
excess kurtosis. These analytical expressions are compared to
direct Monte Carlo simulation results. We present a physical
discussion of the sign and magnitude of the memory effect in
Sec. IV. We also discuss the long time limit and the tendency
to the universal reference state in Sec. V. Some final remarks,
relevant to putting our work in the proper context, are presented
in Sec. VI. Preliminary accounts on parts of this work were
published in [37].

II. UNIFORMLY HEATED GRANULAR GAS

We consider a system of N inelastic smooth hard particles
of mass m and diameter σ . The collisions between them
are inelastic and characterized by the coefficient of normal
restitution α, which we assume does not depend on the
relative velocity. In a binary collision of particles i and j ,
the relation between the precollisional velocities (vi ,vj ) and
the postcollisional velocities (v′

i ,v
′
j ) is

v′
i = vi − 1 + α

2
(σ̂ · vij )σ , v′

j = vj + 1 + α

2
(σ̂ · vij )σ ,

(1)

where vij ≡ vi − vj is the relative velocity and σ̂ is the
unit vector pointing from the center of particle j to the
center of particle i at the collision. Moreover, independent
white noise forces act over each grain, so that the following
Boltzmann-Fokker-Planck equation holds for a homogeneous
system [7,10]:

∂

∂t
f (v1,t) = σd−1

∫
dv2 T̄0(v1,v2)f (v1,t)f (v2,t)

+ ξ 2

2

∂2

∂v2
1

f (v1,t), (2)

where d is the dimension of space, ξ is a measure of the noise
intensity, and T̄0 is the binary collision operator defined by

T̄0(v1,v2) =
∫

dσ̂ �(v12 · σ̂ )(v12 · σ̂ )
(
α−2b−1

σ − 1
)
. (3)

In the equation above, the operator b−1
σ replaces the velocities

v1 and v2 by the precollisional ones, which would be obtained
by inverting (1). We assume here that the system remains
spatially homogeneous, which is backed up by molecular dy-
namics simulations [10]: the velocity probability distribution
f is thus solely a function of velocity and time.

The granular temperature T (t) is defined as usual,

n

〈
1

2
mv2(t)

〉
≡

∫
dv

1

2
mv2f (v,t) = d

2
nT (t), (4)

where n is the density of the system. Moreover, we also
introduce the excess kurtosis, or second Sonine coefficient
a2, of the velocity distribution,

a2 = d

d + 2

〈v4〉
〈v2〉2

− 1. (5)

The excess kurtosis measures the departure from a Gaussian
distribution, for which a2 vanishes. It is worth remembering
that

∫
dvf (v,t) = n, so that

〈vn〉 ≡ 1

n

∫
dv vnf (v,t). (6)

Starting from the Boltzmann-Fokker-Planck equation (2), one
can derive the equation governing the time evolution of the
granular temperature,

dT

dt
= mξ 2 − ζ0T

3/2

(
1 + 3

16
a2

)
, (7)
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where

ζ0 = 2nσd−1(1 − α2)π
d−1

2√
m d 
(d/2)

. (8)

Equation (7) is valid in the so-called first Sonine approxima-
tion, and terms of O(a2

2) are neglected in its derivation [7]
together with higher order contributions, which do not seem
to be relevant [38]. In other words, the velocity distribution is
expanded in the form

f (v,t) = e−v2/v2
0

vd
0 πd/2

[1 + a2 S2(v/v0)], (9)

S2(x) = 1

2
x4 − d + 2

2
x2 + d(d + 2)

8
, (10)

where v0 is the time dependent typical velocity defined by T =
mv2

0/2 and S2(x) is the second Sonine polynomial. Sonine-
related techniques are often useful in kinetic theory [39] to
study the nonequilibrium behavior of dissipative gases [22] or
in the context of ballistically controlled irreversible dynamics
[40,41].

In the long time limit, the system approaches a steady state
in which the energy input due to the white noise force balances,
on average, the energy loss due to the collisions. Therefore, the
granular temperature T and the excess kurtosis a2 approach
their steady values Ts and as

2, respectively, which verifies

mξ 2 = ζ0T
3/2

s

(
1 + 3

16
as

2

)
. (11)

The evolution equation (7) and its particularization to the
steady state (11) are not closed for the granular temperature
because of the terms proportional to the excess kurtosis in
them. The steady value of the excess kurtosis can be calculated
in the first Sonine approximation [7,12],

as
2 = 16(1 − α)(1 − 2α2)

73 + 56d − 24dα − 105α + 30(1 − α)α2
. (12)

Then, the steady value of the temperature is

Ts = m

[
d
(d/2)ξ 2

2π
d−1

2 nσd−1(1 − α2)
(
1 + 3

16as
2

)]2/3

. (13)

Let us turn Eq. (7) into an evolution equation for the
dimensionless variable

β =
√

Ts

T
(14)

that measures the separation of the temperature from its steady
value. A simple calculation yields

dβ

dt
= ζ0

2

√
Ts

[
1 + 3

16
a2 −

(
1 + 3

16
as

2

)
β3

]
. (15)

The evolution equation for the excess kurtosis can also
be derived from the Boltzmann-Fokker-Planck equation [16].
We again consider the first Sonine approximation and neglect
nonlinear terms in the excess kurtosis to obtain

β
da2

dt
= 2ζ0

√
Ts

[
(1 − β3)a2 + B

(
as

2 − a2
)]

. (16)

The parameter B has been computed in [16,42], with the result

B = 73 + 8d(7 − 3α) + 15α[2α(1 − α) − 7]

16(1 − α)(3 + 2d + 2α2) + as
2{85 + d(62 − 30α) + 3α[10α(1 − α) − 39]} , (17)

which is then a given function of the restitution coefficient and
of the dimension of space. It turns out, however, that it can
be obtained from a self-consistent argument [37]. In the limit
where the forcing ξ is so small that β → 0, the excess kurtosis
should evolve to its homogeneous cooling state value, given
by [12]

aHCS
2 = 16(1 − α)(1 − 2α2)

25 + 2α(α − 1) + 24d + α(8d − 57)
. (18)

This yields a strong constraint on B, which has to be
compatible with this requirement. In other words, the right
hand side of Eq. (16), when β can be neglected, should admit
aHCS

2 as a root. Thus,

aHCS
2 + B

(
as

2 − aHCS
2

) = 0, (19)

from which we obtain that

B = aHCS
2

aHCS
2 − as

2

(20)

= 73 + 8d(7 − 3α) + 15α[2α(1 − α) − 7]

16(1 − α)(3 + 2d + 2α2)
. (21)

This expression, interestingly, is derived in a more straight-
forward way than in Ref. [16]. The two expressions for B

differ by the term proportional to as
2 in the denominator of

Eq. (17), which reduces to Eq. (21) if this term is omitted. In
the following analysis, we will make use of Eq. (21) instead
of Eq. (17) since it turns out to be more accurate compared
to simulation results. In addition, this is consistent with the
linearization in a2 in Eq. (16): Therein, B multiplies a2 − as

2,
so that any terms proportional to the excess kurtosis in B

should be neglected.
Equations (16) and (15) constitute a closed set of two

differential equations for the time evolution of the rescaled
temperature β and the excess kurtosis a2. We can also introduce
a rescaled excess kurtosis

A2 = a2

as
2

, As
2 = 1, (22)

and rewrite Eqs. (15) and (16) in the following way:

dβ

dτ
= 1 − β3 + 3

16
as

2(A2 − β3), (23a)

β
dA2

dτ
= 4[(1 − β3)A2 + B(1 − A2)], (23b)
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where we have introduced a rescaled time

τ = ζ0
√

Ts

2
t. (24)

Equations (23) are nonlinear in β but linear in the excess
kurtosis, consistent with our approach. Obviously, β = 1 and
A2 = 1 is a stationary solution.

III. MEMORY EFFECT

We are interested in analyzing the following experiment.
First, we let a system of inelastic hard particles reach the
steady state corresponding to some value of the driving, say
ξ0. Then, at t = 0 we quench the driving to either ξ1 < ξ0

(cooling protocol) or ξ1 > ξ0 (heating protocol), and the
system subsequently evolves for a time tw, the waiting time.
At t = tw, we measure the granular temperature and suddenly
change the driving to the value ξ such that the stationary
granular temperature Ts(ξ ) equals the measured value at tw,
T (t = tw). This amounts to ξ1 < ξ < ξ0 in the cooling case

(b)

t

ξ

t

ξ1

Ts(ξ)

Ts(ξ1)

T

tw0

ξ0

Ts(ξ0)

t

ξ

t

ξ1

Ts(ξ)

Ts(ξ1)

T

tw0

ξ0

Ts(ξ0)

(a)

FIG. 1. (Color online) Sketch of the drive time dependence for
the cooling and heating protocols. The resulting normal temperature
evolution is depicted. The system is first in a nonequilibrium steady
state at temperature Ts(ξ0) under a drive ξ0. T (tw) coincides with Ts(ξ ).
(a) Cooling protocol: The driving ξ1 in the waiting time window 0 <

t < tw is smaller than its initial value ξ0, and the granular temperature
will display a maximum before returning to its steady value for t > tw .
(b) Heating protocol: We have ξ1 > ξ0, and the granular temperature
will display a minimum for t > tw .

and ξ1 > ξ > ξ0 in the heating one (see Fig. 1). If the state
of the system were completely determined by the granular
temperature, as is the case in the homogeneous cooling state,
the temperature would remain constant for t > tw. But, since
the values of the excess kurtosis for t = tw and for the steady
state corresponding to the final driving ξ are different, the
granular temperature will separate from its steady value at
first, pass through an extremum, and only return to its steady
(initial) value for longer times. We may refer to this behavior as
the Kovacs hump because it is similar to the similarly named
behavior in polymers, structural glasses, and other complex
systems [25–34].

In the analogous experimental situation for molecular
systems, when the “driving” is first lowered (ξ0 → ξ1) and
afterwards increased to an intermediate value (ξ1 → ξ < ξ0),
the measured quantity, typically the volume [25,26,29,32]
or the energy [27,28,30,31,33,34], always passes through
a maximum. An analogous behavior is expected for any
physical quantity that increases with increasing temperature.
On the other hand, within the heating protocol, a minimum is
expected, as theoretically predicted by linear response theory
[31]. Moreover, in the nonlinear regime, the existence of this
minimum for the heating protocol has recently been checked
for a simple model [33]. We will refer to this behavior, in
which the time derivative of the energy changes sign at tw,
that is, the energy displays a rebound, as “normal.” It must
be stressed here that the final state of the granular gas is not
an equilibrium one but an out-of-equilibrium stationary state,
and thus, the behavior of the granular temperature may be
different.

A. Analytical results

The evolutions in the waiting window (0 � t � tw) and
for t � tw both obey the differential equations (23), but with
different initial conditions. At t = 0, we have A2 = 1 with
either β < 1 (cooling protocol) or β > 1 (heating protocol). At
t = tw, a “reversed” condition should be enforced, with β = 1,
while A2 results from the dynamics in the waiting window.
A2(tw) turns out to be larger than 1 for the cooling protocol
and smaller than 1 in the heating case (see Sec. IV B). Since
the waiting time dynamics only enters through the value of
A2(tw), we assume the latter and concentrate on the evolution
at t > tw. We shall use the rescaled time τ introduced in (24),
with τw = ζ0

√
Ts tw/2.

Equations (23) with the initial conditions

β(τ = τw) = 1, A2(τ = τw) ≡ Aini
2 , (25)

do not seem to admit an analytical solution, but an approximate
and accurate method can be found in the following way. The
initial value of A2 is of the order of unity: In the cooling case,
A2 is bounded from above by aHCS

2 /as
2, shown in Fig. 2, and in

the heating case, we have 0 < Aini
2 < 1, as shown in Sec. IV B.

The idea is next to expand both β and A2 in powers of as
2. The

rationale for this expansion is the small value of as
2 throughout

the whole inelasticity range, namely, |as
2| � 0.086. Thus, we

introduce the series expansions

β(τ ) = β0(τ ) + as
2β1(τ ) + · · · , (26a)

A2(τ ) = A20(τ ) + as
2A21(τ ) + · · · (26b)
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FIG. 2. Plot of aHCS
2 /as

2 as a function of the restitution coefficient
α for a system of inelastic hard disks (d = 2), following from the
accurate expressions obtained in [12]. The top and bottom insets
show the excess kurtosis for the steady state as

2 and the parameter B

as functions of α, as given by Eqs. (12) and (17), respectively.

into (23) and write the subsequent equations up to linear order
in as

2. To the zeroth order we have

dβ0

dτ
= 1 − β3

0 , β0
dA20

dτ
= 4

[(
1 − β3

0

)
A20 + B(1 − A20)

]
,

(27)

subject to the initial conditions β0(τ = τw) = 1 and A20(τ =
τw) = Aini

2 . Therefore, β0(τ ) = 1, ∀ τ ,

dA20

dτ
= −4B(A20 − 1). (28)

The zeroth order solution is then

β0(τ ) = 1, (29a)

A20(τ ) = 1 + �Aini
2 e−4B(τ−τw), �Aini

2 ≡ Aini
2 − 1. (29b)

To this order, the granular temperature β0 remains constant,
while A20 relaxes exponentially from its initial to its steady
state value with a characteristic time (in the τ scale)

τc = (4B)−1. (30)

There is consequently no memory effect to zeroth order.
The equation for the first order contribution to the scaled

temperature is

dβ1

dτ
= −3β1 + 3

16
�Aini

2 e−4B(τ−τw), β1(τ = τw) = 0, (31)

whose solution is readily obtained as

β1(τ ) = γ�Aini
2

(
e−3(τ−τw) − e−4B(τ−τw)). (32)

We have introduced the definition

γ = 3

16(4B − 3)
> 0, (33)

which is positive definite because B > 3/4 (see Fig. 2). The
parameter γ depends on the restitution coefficient α and the
dimension of space d, as does B. Note that we have needed

only the zeroth order approximation A20 for calculating the
evolution of the temperature up to first order in the perturbation
parameter as

2, that is, β1. This stems from the mathematical
structure of the equation for β in (23), in which A2 only appears
in the term proportional to as

2. We will consider the first order
correction A21 to the excess kurtosis in Sec. V, in connection
with the long time behavior of the solution.

Equation (32) implies that the sign of β1(τ ) is the same as
the sign of Aini

2 − 1, which can be shown to be positive for the
cooling procedure and negative in the heating case. We will
come back to this feature in Sec. IV B. The time evolution for
the temperature, obtained by substituting (29a) and (32) into
(26a), is given by

β(τ ) − 1 = as
2γ�Aini

2

(
e−3(τ−τw) − e−4B(τ−τw)

)
= γ

(
aini

2 − as
2

)
(e−3(τ−τw) − e−4B(τ−τw)), (34)

up to higher order terms in O(as
2)2. Thus, the sign of the

“distance” β − 1 of the granular temperature to its steady value
is the same as that of (aini

2 − as
2). If α is changed, it affects both

as
2 and aini

2 , so that (aini
2 − as

2) and as
2 share the same sign,

which changes at a certain value of the restitution coefficient,
αc 	 1/

√
2 	 0.707 [43]: As a consequence, as

2 > 0 for α <

αc, while as
2 < 0 for α > αc (see the top inset in Fig. 2). We

now restrict the discussion to cooling protocols. The above
reasoning implies that for high inelasticities, namely, α < αc,
β − 1 > 0, and then β has a maximum while the granular
temperature has a minimum (remember that T = Ts/β

2). The
situation reverses for small inelasticities, α > αc, for which
β − 1 < 0. Then, β has a minimum, which corresponds to a
maximum of the granular temperature. On the other hand, for
heating protocols, the phenomenology is reversed but is ruled
by very similar mechanisms. For α > αc, T shows a minimum,
whereas for α < αc, it exhibits a maximum. A more physical
explanation will be provided in Sec. IV A.

It should be noted here that from the structure of Eq. (34),
the shape of the hump (the τ dependence) and its amplitude
are factorized. In other words, Eq. (34) can be rewritten as

β(τ ) − 1 = g(τw) h(τ − τw), (35a)

g(τw) = as
2�Aini

2 = aini
2 − as

2, (35b)

h(s) = γ (e−3s − e−4Bs) > 0. (35c)

The prefactor g(τw) contains all the information about
the details of the protocol in the waiting time window, that
is, the dependence of the hump not only on tw but also on
{ξ0,ξ1}, while h(τ − τw) determines its shape. We shall show
in Sec. IV B that �Aini

2 has a definite sign for both cooling
and heating protocols, so that g also determines the sign of the
hump through the steady value of the excess kurtosis as

2, or,
equivalently, aini

2 − as
2.

Equation (34) or (35) gives then the lowest order expression
for the Kovacs hump within the theoretical framework we have
just developed. It clearly shows that the granular temperature is
not enough to describe the state of uniformly heated granular
gases, as has already been claimed by other means [16,17].
If that were the case, no hump at all would be present
when the system is prepared with the correct initial granular
temperature for the subsequent driving, within our Kovacs-
type program. On the other hand, the existence of the Kovacs
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hump does not directly follow from the non-Maxwellian
character of the velocity distribution. Indeed, although the
velocity distribution of a granular gas is generically non-
Gaussian, the granular temperature may completely specify
its state in some situations. This is the case not only for the
homogeneous cooling state but also for the equivalent system
driven by the so-called Gaussian thermostat. Therein, particles
are accelerated between collisions by a force proportional to
their own velocity [11,35,36], and no Kovacs hump would
be observed if an analogous stepwise driving procedure were
followed.

B. Numerical results

We compare here the analytical expression for the Kovacs
hump to the results obtained by direct Monte Carlo simulations
[44] of the Boltzmann-Fokker-Planck equation. We have used
a system of N = 104 hard disks (d = 2) of unit mass m = 1
and unit diameter σ = 1, with the collision rule (1). The
results have been averaged over a large number (ranging
from NT = 105 to 1.5 × 106) of realizations of the stochastic
dynamics of the system. The stochastic thermostat is taken
into account by the procedure first introduced in Ref. [10].
Over each trajectory, the hard disks are submitted to random
kicks every Nc = N/103 = 10 collisions. In the kick, each
component of the velocity of every particle is incremented by
a random number extracted from a Gaussian distribution of
variance ξ 2�t , where �t is the time interval corresponding to
the number of collisions Nc. Moreover, every N/102 = 100
collisions, a possible nonvanishing center of mass velocity is
eliminated to enforce conservation of momentum and avoid a
spurious drift of the center of mass velocity.

Our analytical predictions reveal that the Kovacs effect is all
the more pronounced as the difference |aini

2 − as
2| is large. Quite

intuitively, there are two ways to maximize |aini
2 − as

2|: either
taking ξ1 
 ξ0 [equivalently, Ts(ξ1) 
 Ts(ξ0)] in the cooling
case or, in the heating situation, reversing all inequalities.
We concentrate here on the cooling protocol, for which we
have performed simulations such that the choice ξ1 
 ξ0

guaranties that the system, in the waiting time window,
has an excess kurtosis that quickly evolves towards its free
cooling counterpart; thus, A2(τw) = aHCS

2 /as
2. We will discuss

in Sec. IV B the cases of finite ξ1/ξ0. For the sake of simplicity,
we have used ξ1 = 0 throughout, which allows us to simplify
the simulation procedure (see below).

Let us explain how we calculate in the simulations the
final value of the driving ξ from the value of the granular
temperature T (tw) at the end of the waiting time window.
For an arbitrary value of the intermediate driving ξ1, (i)
run all the realizations until the waiting time, (ii) obtain the
granular temperature T (tw) averaging over all the realizations,
(iii) determine the final value of the driving ξ therefrom, and
(iv) continue running all the realizations. This numerical
procedure introduces some (in general unavoidable) numer-
ical errors, stemming from the fluctuations of the granular
temperature over the different realizations. Nevertheless, we
may take advantage of the value of the driving in the waiting
time window, ξ1 = 0, to eliminate these fluctuations and
minimize the numerical error. For long enough waiting times
[45], the system cools in the homogenous cooling state, a

regime where the whole time evolution may be encoded in
the granular temperature. Then, we proceed in the following
way: (i) We choose a value of the final driving ξ and
calculate the corresponding steady granular temperature Ts(ξ ),
(ii) run each realization until the shortest time t such that
T (t) < Ts(ξ ), (iii) rescale all the velocities of the particles with
a factor

√
Ts(ξ )/T (t), so that T (t) = Ts(ξ ), thus effectively

eliminating the granular temperature fluctuations at the waiting
time, and (iv) continue running all the realizations.

In Fig. 3, we show the comparison between the numerical
computation of the Kovacs hump and our theoretical prediction
in the high inelasticity regime α < αc 	 0.707. Namely,
we have considered α = 0 (top) and α = 0.3 (bottom). In
both cases, there are two theoretical curves: The dashed
line corresponds to the raw evaluation of Eq. (34) with the
theoretical values of as

2, aHCS
2 , and B given by Eqs. (12), (18),

and (21), respectively. Although the qualitative agreement is
reasonable, there are quantitative discrepancies. This is not
surprising. While the analytical predictions for as

2 and aHCS
2

turn out to be reliable for our purposes, Eq. (21) does not fare
as well and may be plagued by nonlinear effects, as is the case
for Eq. (17) [16]. Therefore, we have followed an alternative
route: We first measure B from the relaxation of the excess
kurtosis, as embodied in relation (29b) (see Fig. 4), which
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FIG. 3. (Color online) Plot of the Kovacs hump for α = 0 (top)
and α = 0.3 (bottom). The simulation curves (points) have been
averaged over 105 trajectories, and they are compared to (i) the raw
theoretical curve (34), evaluated with the theoretical expressions for
the parameters as

2, B, and aHCS
2 (dashed line) and (ii) the improved

theory obtained by inserting into (34) the value of the B parameter
given by the Monte Carlo simulation (solid line). The second route
improves the agreement between theory and simulation. The specific
values of the parameters for each of the plotted curves are given in
Table I. Note the smallness of β − 1, which is of the order of 10−3 in
both cases.
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FIG. 4. (Color online) Decay of the excess kurtosis from its
initial value to its steady state value. Plotted is the simulation
curve obtained by direct simulation Monte Carlo (DSMC) (points)
for α = 0.3. The long time limit is very close to its predicted
value as

2 = 0.00638, following from Eq. (12) and shown by the
dashed line. In the inset, the same decay is shown, but on a
logarithmic scale (points). From the linear slope, we directly measure
the parameter B to be inserted into the theoretical expression for
the Kovacs hump, Eq. (34). The obtained values are given in
Table I.

clearly exhibits an exponential behavior. The corresponding
value of B is then inserted in Eq. (34) to give the solid line in
Fig. 3. A posteriori, we have also compared the values of B to
their analytical counterparts, as seen in Table I. The inaccuracy
of the theoretical estimate is approximately 10% for Eq. (21)
and 20% for Eq. (17), consistent with the situation found in
previous studies [16]. It appears that once an accurate value of
the relaxation parameter B is known, quantitative predictions
can be made.

Figure 5 shows the Kovacs hump for a smaller value of the
inelasticity, namely, α = 0.8 > αc. As predicted by the theory,
the sign of β − 1 is reversed since as

2 < 0 for α > αc. The
simulation curve has been averaged over 1.5 × 106 trajectories
because in this region not only |as

2| but also �Aini
2 is of smaller

magnitude (see Fig. 2). Thus, the amplitude of the hump is
reduced roughly tenfold compared to those in Fig. 3. For α =
0.8, the error in the theoretical estimate of (aHCS

2 − as
2) is of

the order of 20%, roughly an order of magnitude larger than
the one for the highly dissipative cases of Fig. 3. Therefore, in
order to obtain good agreement between theory and simulation
(solid line), we have to insert into (34) both the measured value
of B and the simulation value of the excess kurtosis difference
(aHCS

2 − as
2) [46]. A similar situation, in which not only B but

also the excess kurtosis had to be taken from the simulations,
was found in the analysis of the universal reference state of
Ref. [16] in the same range of inelasticities.

TABLE I. Values of the excess kurtosis decay rate B, correspond-
ing to the plots in Figs. 3 and 5. For comparison with Monte Carlo
data, Eq. (21) has been used.

α = 0 α = 0.3 α = 0.8

B from DSMC 1.802 1.920 2.440
B from (17) 1.422 1.555 2.602
B from (21) 1.652 1.753 2.507
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FIG. 5. (Color online) Plot of the Kovacs hump for α = 0.8. The
meaning of the different symbols and lines is the same as in Fig. 3.
Note that the sign of β − 1 is reversed, β − 1 < 0, as the restitution
coefficient α > αc 	 0.707.

IV. SIGN AND MAGNITUDE OF THE EXTREMUM

A. Physical origin of the effect

We attempt a more physical explanation of the mechanism
at work here, which is, expectedly, very different from that in
glassy systems. In essence, the effects we observe are subtle
consequences of energy dissipation, Without loss of generality,
we focus on the cooling protocol. An important feature is the
shape of the velocity distribution f (v,t), through the sign
of the excess kurtosis a2. Is it “flatter” than the Gaussian
(so-called platykurtic, with a2 < 0), or is it “thinner” (so-called
leptokurtic, with a2 > 0)? Distributions with a2 < 0 dissipate
less energy (and, conversely, more energy when a2 > 0).
Indeed, one can show that to linear order in the excess kurtosis,

〈vn
12〉

〈vn
12〉0

= 1 + a2
n(n − 2)

16
, (36)

where the average with index 0 refers to a Gaussian distri-
bution of the same variance and v12 is the modulus of the
relative velocity. The correction to unity vanishes when n = 0
(normalization) and n = 2 (equality of variances). Energy
dissipation is related to the moment n = 3 (one v coming
from the collision frequency and v2 coming from the fact that
we are interested in the kinetic energy). Thus, 〈v3

12〉 < 〈v3
12〉0

for a2 < 0 [47].
We start by discussing the behavior of the system in the

cooling protocol [see Fig. 1 (a)], in which the driving in the
waiting time window is smaller than the initial one, ξ1 < ξ0.

Moreover, for the sake of simplicity, we focus on the limiting
case ξ1 = 0, in which the system freely cools for 0 < t < tw.
We analyze the case ξ1 �= 0 in Sec. IV B, in which we show that
this change only affects the magnitude of the effect, not its sign.
Close to elasticity, a2 < 0 for both driven and undriven gases
(platykurtic behavior). It is quite difficult to shape an intuition
for the sign. It may be tempting to argue that it is a means
for the system to minimize energy dissipation, in spite of the
lack of a general principle holding for such nonequilibrium
systems. What is more intuitive is that the unforced system
shows stronger non-Gaussianities than the driven one, which
benefits from stochastic kicks from the forcing, |aHCS

2 |/|as
2| >

1 . Hence, at t = tw, the system is in a state where a2 is more
negative than it asymptotically will be, and therefore, energy

012204-7



E. TRIZAC AND A. PRADOS PHYSICAL REVIEW E 90, 012204 (2014)

dissipation is, transiently, less. This implies that T shows a
maximum (or β a minimum, as we observe).

The above scenario applies as long as dissipation is not
too large (α > αc = 1/

√
2). On the other hand, for α < αc =

1/
√

2, the driven and undriven systems become leptokurtic
(a2 > 0, in order, in a hand-waving fashion, to cope with large
dissipation). We can subsequently follow the same reasoning
as above, which explains the anomalous effect. The undriven
kurtosis is larger than the driven one (the driven f is always
the most Gaussian), so that the larger value of a2 at tw brings
extra dissipation. Thus, T shows an undershooting (maximum
of β).

For heating protocols [see Fig. 1(b)], we next focus on the
limiting case ξ1 → ∞. Again, a finite value of the driving in the
waiting time window ξ1 does not change the sign of the effect,
only its magnitude (see the next section). For a very large value
of ξ1, the system rapidly evolves to a Gaussian distribution with
a2 = 0 in the waiting time window. Therefore, we always have
|as

2| > |aini
2 | = 0, and following the same line of reasoning as

in the cooling case, it is easily shown that the separation of the
temperature from its steady value is simply reversed.

The above picture remains valid for a closely related
thermostat, in which the energy injection is the same but the
bath provides an additional friction force [48]. In particular, the
value of the excess kurtosis for that thermostat also verifies that
|as

2| < |aHCS
2 |. The introduction of this additional friction force

allows the system to reach a well-defined steady state even in
the elastic limit α = 1, in which the dissipation stemming from
collisions disappears.

B. The optimal waiting time

We now return to the cooling protocol, in the limiting
case where ξ1/ξ0 is close to zero. At ξ1/ξ0 = 0, the waiting
time tw can be arbitrarily large since a2 will evolve to aHCS

2 ,
and the longer one waits (in the real time scale, not in the
τ scale; see below), the stronger the effect is. In general,
however, there is an optimal value of tw, which depends on
the ratio Ts(ξ1)/Ts(ξ0), for which the amplitude of the Kovacs
response is maximal. The reason is that the difference in
kurtosis, |a2(tw) − as

2|, should be maximized. If one spends
too much time in the waiting window, the system can attain
its nonequilibrium steady state; a2(tw) then reaches the value
as

2 (A2 → 1), and the humps disappears. This holds for both
the cooling (ξ1 < ξ0) and the heating (ξ1 > ξ0) protocols
(see Figs. 6, 7, and 8). These figures therefore exhibit an
extremum at a particular value of τw, which provides the
optimal waiting time. It can be observed that in the τ scale,
this optimum depends only weakly on ξ1/ξ0 [or, equivalently,
on Ts(ξ1)/Ts(ξ0)] and, likewise, quite weakly on dissipation.

The trends observed in the figures, with a maximum
(minimum) in the cooling (heating) case, can be understood
as in Sec. IV A and are fully consistent with the argument put
forward there. In the extreme case Ts(ξ1)/Ts(ξ0) → ∞ (that
is, ξ1/ξ0 → ∞), the velocity distribution has enough time to
become Gaussian, with thus a vanishing a2 (and A2). This is the
behavior shown in Fig. 7. Yet the dashed line also shows that
for any finite Ts(ξ1)/Ts(ξ0), no matter how large, the optimal
waiting time becomes vanishingly small in the τ scale, which
reflects the fact that under extreme forcing ξ1, the system is so
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FIG. 6. Evolution of excess kurtosis ratio, A2(τw) ≡ a2(τw)/as
2,

as a function of waiting time within the cooling protocol at α = 0.3.
From bottom to top, the curves correspond to Ts(ξ0)/Ts(ξ1) =
2,4,9,25, and 200. The upper dashed curve is for the limit
Ts(ξ1)/Ts(ξ0) → 0. Note that A2(τw) defines the quantity Aini

2 used
throughout. For a given value of α, the maximum possible A2 is
aHCS

2 /as
2. For α = 0.3, Fig. 2 indicates that this ratio is close to 2.33,

which is consistent with the maximum of the dashed curve.
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FIG. 7. Same as Fig. 6, but for the heating protocol. Here, from
top to bottom, Ts(ξ1)/Ts(ξ0) = 2,4,9,25. The lower dashed curve is
for Ts(ξ1)/Ts(ξ0) → ∞.
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FIG. 8. Excess kurtosis ratio as a function of waiting time
(cooling protocol) for different dissipations and Ts(ξ1)/Ts(ξ0) =
1/25.
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driven that it is able to quickly reach its steady state. It is, at
this point, interesting to turn to the dashed line in Fig. 6 for
the cooling extreme case ξ1/ξ0 → 0. It reveals that the optimal
τw also vanishes, whereas, on intuitive grounds, it should be
that one could wait an arbitrarily long time without seeing the
system depart from the homogeneous cooling state it quickly
attains. In other words, one may expect that the optimal waiting
time should diverge upon decreasing the forcing. This is the
case, but it can only be appreciated by returning to the original
t scale: it turns out that the optimal tw ∝ τw/

√
Ts(ξ1) diverges

when ξ1 → 0 due to the vanishing of Ts(ξ1).
We attempt here a summary of the main results reported

in this section. The Kovacs-like protocol used throughout this
paper can be described by three dimensionless parameters:
(i) the restitution coefficient α, (ii) the ratio ξ1/ξ0 of the
intermediate driving ξ1 to the initial one ξ0, and (iii) the
dimensionless waiting time τw, which in turn fixes the ratio
ξ/ξ1. The sign of the hump is completely determined by the
first two, α and ξ1/ξ0, while the third only affects the magnitude
of the extremum. A phase diagram of the Kovacs hump is
sketched in Fig. 9. The “normal” behavior is similar to the
one observed in molecular systems when controlling the bath
temperature and measuring the energy (or the volume). The
lines in the diagram indicate the values of the parameters for
which no Kovacs hump would be observed. The solid line
ξ1 = ξ0 separating the heating and cooling protocols delineates
a “trivial” boundary, with no change in the driving and thus no
hump. On the other hand, the dashed line α = αc separating the
low and high inelasticity regions is less expected and follows
from the accurate prediction of the first Sonine approximation
for the change of sign in the Kovacs hump.

Normal

α
0 1αc

1

ξ1
ξ0

Normal

Anomalous

Anomalous

FIG. 9. Phase diagram of the Kovacs hump. The line ξ1/ξ0 =
1 (solid) separates the cooling (ξ1 < ξ0) and the heating (ξ1 > ξ0)
protocols. The dashed line α = αc = 1/

√
2 separates systems with

high inelasticity (α < αc) from those with low inelasticity (α > αc).
Note that the plots are for the granular temperature T ; a maximum in
T corresponds to a minimum in the β variable defined in Eq. (14).

V. LONG TIME BEHAVIOR AND COMPATIBILITY WITH
THE UNIVERSAL REFERENCE STATE

On close inspection, the trends reported above for the time
evolution of β are not compatible with the requirement that
the system should asymptotically evolve towards the universal
state brought to the fore in Ref. [16]. We discuss and resolve
that question here. In a nutshell, the time evolution is slightly
more complex than the simplified expressions obtained in
Sec. III A. For the sake of simplicity, we use in this section the
shifted time variable τ = ζ0

√
Ts(t − tw)/2, which vanishes

at t = tw. Let us consider the equation for the first order
correction to the excess kurtosis,

dA21

dτ
+ 4BA21 = −[(12 − 4B)A20 + 4B]β1. (37)

We do not write here its complete solution, only its leading
behavior for long times. The solution of (37) is a linear
combination of exponentials with different relaxation times.
For τ → ∞, the right hand side of (37) behaves, to dominant
order, as

h(τ ) = −12γ�Aini
2 e−3τ , (38)

as follows from Eqs. (29b) and (32). The term in A21 coming
therefrom is

Ah
21(τ ) = −64γ 2�Aini

2 e−3τ (39)

and asymptotically dominates

A21(τ ) ∼ Ah
21(τ ), τ � 1. (40)

Interestingly, this term is much bigger than A20(τ ) for very
long times and thus gives the long time tendency to the steady
value of the rescaled excess kurtosis,

A2(τ ) − 1 ∼ as
2A

h
21(τ ), τ � 1. (41)

The condition for the asymptotic result in (41) to hold is,
more concretely, exp(−4Bτ ) 
 exp(−3τ ), or, equivalently,
exp[−(4B − 3)τ ] 
 1. It is worth noting that the sign of
Ah

21(τ ) is opposite that of �Aini
2 and therefore different from

that of the zeroth order contribution A20(τ ) − 1 [see Eq. (29b)].
Since as

2 < 0 for weakly dissipative systems, α > αc, while
as

2 > 0 in the highly dissipative case, α < αc, Eq. (41) predicts
that, for long times τ � 1, the sign of A2 − 1 is the opposite of
that of A20 − 1 for α < αc. This means that A2 has a minimum
and tends to unity from below in the highly dissipative case.
This behavior was overlooked by the analysis performed in the
previous sections. The effect is quite small and thus difficult
to measure in the simulations, but it has important theoretical
consequences. In Ref. [16] it was proved that, for long enough
times, a uniformly heated granular gas reaches the universal
reference β state, over which all the time dependence can
be encoded in β. In other words, for long enough times,
all the moments of the velocity distribution function (for
instance, the excess kurtosis) forget their initial conditions
and become only a function of the distance β to the steady
state. Afterwards, for even longer times, β approaches its
steady value. For the excess kurtosis, and in the linear regime
close to the steady state, this universal behavior is given
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by

A2 − 1 ∼ dA2

dβ

∣∣∣∣
β=1

(β − 1) = − 12

4B − 3
(β − 1). (42)

The value of the derivative dA2/dβ|β = 1 has been calculated
by applying L’Hôpital’s rule to Eq. (19) of Ref. [16].

If we take the lowest order approximation for both A2 − 1,
which is A20 − 1, and β − 1, which is given by β1, we have
that

lim
τ→∞

A20 − 1

β − 1
= 0, (43)

in strong disagreement with (42), which predicts a value
−12/(4B − 3) < 0 instead. This problem is mended if we
consider, as should be done, A2 − 1 and β − 1 up to the same
order. Since the dominant term for long times in the decay of
A2 is proportional to Ah

21, as given by (41), and the long time
behavior of β − 1 can be straightforwardly inferred from (34),

β(τ ) − 1 ∼ as
2γ�Aini

2 e−3τ , (44)

one obtains that

A2 − 1

β − 1
∼ −64γ = −12

4B − 3
, τ � 1, (45)

where the definition of γ , Eq. (33), has been used. The result
in (45) is in agreement with (42).

Figure 10 shows the tendency of the system to approach
the universal reference state for very long times. Although
to the zeroth order the overall relaxation of the excess kurtosis
to the steady state is very well described by a single exponential
(see Fig. 4), for very long times a2 − as

2 changes sign and tends
to zero from below. This is in full agreement with the approach
to the universal reference state, as described by Eq. (42)
or (45). The minimum is tiny, being four orders of magnitude
smaller than the initial distance to the steady state for the
plotted case (α = 0.3). This makes it very difficult to measure
this effect in simulations. However, it is crucial from a
theoretical point of view since it shows that the theoretical
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FIG. 10. Tendency to the universal reference state for very long
times. We show a zoom of the long time behavior (τ − τw � 1) of the
decay of the excess kurtosis to its steady value, |a2 − as

2| � 2 × 10−5.
The overall picture is that of Fig. 4, which also corresponds to α =
0.3, for which aini

2 − as
2 	 0.086. Plotted here is the excess kurtosis

decay obtained from (i) the numerical integration of Eq. (23) with
initial conditions (25) (solid line) and (ii) the asymptotic behavior
given by Eqs. (41) and (39) (dashed line).

approach developed here is compatible with the general long
time behavior derived in Ref. [16].

VI. FINAL REMARKS

In conclusion, we have studied from a granular gas perspec-
tive a memory effect that pertains to glassy phenomenology.
A striking consequence of the analysis is that the sign of the
Kovacs hump changes as the restitution coefficient is varied
from the quasi-elastic limit α → 1− to the completely inelastic
case α = 0. There is a critical value of the restitution coefficient
αc, which coincides with the point at which the stationary value
of the excess kurtosis changes sign. First, we recapitulate
the behavior for cooling protocols like the one depicted in
Fig. 1(a). For weakly dissipative systems, in the sense that
α > αc, the granular temperature passes through a maximum,
larger than its corresponding steady value Ts (β = √

Ts/T <

1). The sign of the hump changes for highly dissipative
systems, in which α < αc: The temperature passes through
a minimum (β > 1). Conversely, for heating protocols, in
which ξ0 < ξ < ξ1, as sketched in Fig. 1(b), we simply have a
reversal of the sign of the hump: the granular temperature
displays a minimum for small inelasticity, α > αc, and a
maximum for high inelasticity, α < αc. Table II summarizes
the phenomenology. On the other hand, in a molecular system,
the measured quantity in the analogous experimental situation
[49] always exhibits a maximum (minimum) in the cooling
(heating) protocol. This stems from the mathematical structure
of the analytical expression for the Kovacs hump within linear
response theory, but the same result seems to remain valid in
the nonlinear regime [31,33,34].

Therefore, the Kovacs effect for uniformly heated granular
gases is normal for small inelasticities, while it is anomalous
in the highly inelastic case, independent of the details of
the protocol followed in the waiting time window. The
intermediate value of the driving ξ1 and the waiting time
tw do affect the amplitude of the memory effect, but not its
sign and shape, as expressed by Eq. (35) and discussed in
Sec. IV. Nevertheless, there are optimal values of ξ1 and tw that
maximize the amplitude of the hump for a given value of the
restitution coefficient. Quite intuitively, for the usual cooling
protocol the optimal choice of parameters corresponds to the
limit ξ1 → 0 with a large enough tw, such that the system ends
up in the homogeneous cooling state inside the waiting time
window.

In molecular systems, energy is conserved, and within the
linear response regime, the shape of the Kovacs hump is closely
related to the linear relaxation function of the energy from the
initial temperature T0 to the final one T . This direct relaxation
function decays monotonically because it is proportional to
the equilibrium time autocorrelation function of the energy, as
stated by the fluctuation-dissipation theorem [50]. In turn, this
monotonicity ensures that the Kovacs hump is always positive
for the usual cooling protocol [31], while it is negative for the
heating protocol considered in Ref. [33]. Therefore, it seems
worth investigating the anomalous character of the Kovacs
hump found here for high dissipation. Specifically, it would
be interesting to analyze the possible relation between the
anomalous character of the Kovacs effect for high dissipation
and the validity of the fluctuation-dissipation relation in

012204-10



MEMORY EFFECT IN UNIFORMLY HEATED GRANULAR GASES PHYSICAL REVIEW E 90, 012204 (2014)

TABLE II. Hump phenomenology and the underlying physical mechanism for the cooling and heating driving protocols in Fig. 1. The
critical value of the restitution coefficient α is αc = 1/

√
2.

Protocol Inelasticity α aini
2 − as

2 Dissipation T hump Kovacs effect

Cooling low >αc <0 smaller than stationary maximum normal
Cooling high <αc >0 larger than stationary minimum anomalous
Heating low >αc >0 larger than stationary minimum normal
Heating high <αc <0 smaller than stationary maximum anomalous

nonequilibrium systems. In the context of granular media,
there is some recent work trying to establish the validity of
fluctuation-dissipation relations [13,51–55]. It seems partic-
ularly appealing to investigate simple models of dissipative
systems [53,56], for which the calculations may be carried
out without introducing any approximations like the Sonine
expansion considered here.

Our main assumptions are (i) the accurateness of the
first-Sonine approximation and (ii) the smallness of the excess
kurtosis, which makes it possible to neglect nonlinear terms in
a2. Our expression for the Kovacs hump, as given by Eq. (34),
is valid up to the linear order in the excess kurtosis. If nonlinear
corrections in a2 were incorporated to the time evolution
equations, this linear order result would not be affected.
The exponential decay of the excess kurtosis to the zeroth
order, as given by A20, is not affected by the introduction of
nonlinearities. The same is applicable to the long time behavior
and the tendency to the universal reference state discussed
in Sec. V. This may be surprising at first glance because
nonlinearities in a2 should certainly change the equation for
the excess kurtosis first order correction A21. However, these
nonlinearities must vanish in the steady state [as (A2 − 1)2 to
the quadratic order], and thus, they are subdominant against
the leading term as given by h(τ ), Eq. (38). The results derived
throughout the paper are therefore robust.

One of the main implications of the original work by Kovacs
is that it clearly showed that the experimental macroscopic
variables (pressure, volume, temperature, for polymers) do
not suffice to completely characterize the system state, which,
in general, depends on the whole previous thermal history. In
this sense, the existence of the Kovacs hump here, independent
of its amplitude and sign (normal or anomalous), is a clear
proof that the state of the uniformly heated granular gas is not
uniquely determined by its granular temperature, and other
variables must be incorporated to have a complete description
of it. At first glance, this conclusion seems similar to that
reached in the analysis of its universal reference β state [16,17],
in which it was shown that the distance to the steady state β

is also necessary to describe the uniformly driven granular
gas. But it must be stressed that here we go further. While
the β state reached for long times is uniquely determined by
the driving ξ and the granular temperature T , we show the

relevance of explicitly keeping track of the intrinsic dynamics
of non-Gaussianities through the decoupling of a2 and β.

In principle, a similar behavior should appear for other
kinds of drivings, provided that the driving intensity and the
granular temperature do not suffice to completely characterize
the state of the system. Within the first Sonine approximation,
the magnitude of the Kovacs hump would be proportional to the
difference between the initial value of the excess kurtosis aini

2
and its steady value for the considered thermostat [57]. In the
usual cooling protocol, if a very low value of the intermediate
driving ξ1 were used, the value of the excess kurtosis after
the waiting time would be close to that of the homogeneous
cooling state. Therefore, non-Gaussianities are a necessary but
not sufficient condition to have a memory effect of the kind
reported here in a driven granular gas [58]. In all generality, the
possibility of having a transition from a normal to anomalous
Kovacs effect is encoded in the change of sign of aini

2 − as
2.

The Kovacs hump in granular gases occurs over the kinetic
time scale. For the time at which the temperature passes
through its extremum, the system has not reached the hydro-
dynamic stage [59] in which the all the time dependence of
the velocity distribution function occurs through the hydrody-
namic fields (density, average velocity, and temperature), and
initial conditions have been forgotten. Over the hydrodynamic
β state of uniformly driven gases, the decay of the temperature
(or of β) to its steady value is a monotonic function of time
[16,17]. Here, this monotonicity condition is only fulfilled
for times greater than that of the extremum. Then, the system
reaches this hydrodynamic solution of the Boltzmann equation
only for very long times, when it is linearly close to the steady
state.
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[4] N. Brilliantov and T. Pöschel, Kinetic Theory of Granular Gases
(Clarendon, Oxford, 2004).

[5] A. Goldshtein and M. Shapiro, J. Fluid. Mech. 282, 75 (1995).
[6] J. J. Brey, M. J. Ruiz-Montero, and D. Cubero, Phys. Rev. E 54,

3664 (1996).
[7] T. P. C. van Noije and M. H. Ernst, Granular Matter 1, 57 (1998).

012204-11

http://dx.doi.org/10.1103/RevModPhys.68.1259
http://dx.doi.org/10.1103/RevModPhys.68.1259
http://dx.doi.org/10.1103/RevModPhys.68.1259
http://dx.doi.org/10.1103/RevModPhys.68.1259
http://dx.doi.org/10.1088/0953-8984/17/24/004
http://dx.doi.org/10.1088/0953-8984/17/24/004
http://dx.doi.org/10.1088/0953-8984/17/24/004
http://dx.doi.org/10.1088/0953-8984/17/24/004
http://dx.doi.org/10.1017/S0022112095000048
http://dx.doi.org/10.1017/S0022112095000048
http://dx.doi.org/10.1017/S0022112095000048
http://dx.doi.org/10.1017/S0022112095000048
http://dx.doi.org/10.1103/PhysRevE.54.3664
http://dx.doi.org/10.1103/PhysRevE.54.3664
http://dx.doi.org/10.1103/PhysRevE.54.3664
http://dx.doi.org/10.1103/PhysRevE.54.3664
http://dx.doi.org/10.1007/s100350050009
http://dx.doi.org/10.1007/s100350050009
http://dx.doi.org/10.1007/s100350050009
http://dx.doi.org/10.1007/s100350050009


E. TRIZAC AND A. PRADOS PHYSICAL REVIEW E 90, 012204 (2014)

[8] P. K. Haff, J. Fluid. Mech. 134, 401 (1983).
[9] D. R. M. Williams and F. C. MacKintosh, Phys. Rev. E 54, R9

(1996).
[10] T. P. C. van Noije, M. H. Ernst, E. Trizac, and I. Pagonabarraga,

Phys. Rev. E 59, 4326 (1999).
[11] J. M. Montanero and A. Santos, Granular Matter 2, 53 (2000).
[12] A. Santos and J. M. Montanero, Granular Matter 11, 157 (2009).
[13] P. Maynar, M. I. Garcı́a de Soria, and E. Trizac, Eur. Phys. J.

Spec. Top. 179, 123 (2009).
[14] M. H. Ernst, E. Trizac, and A. Barrat, J. Stat. Phys. 124, 549

(2006).
[15] K. Vollmayr-Lee, T. Aspelmeier, and A. Zippelius, Phys. Rev.

E 83, 011301 (2011).
[16] M. I. Garcı́a de Soria, P. Maynar, and E. Trizac, Phys. Rev. E

85, 051301 (2012).
[17] M. I. Garcı́a de Soria, P. Maynar, and E. Trizac, Phys. Rev. E

87, 022201 (2013).
[18] A slight variant of the model can be found in [60,48,61].
[19] C. Josserand, A. V. Tkachenko, D. M. Mueth, and H. M. Jaeger,

Phys. Rev. Lett. 85, 3632 (2000).
[20] J. J. Brey and A. Prados, Phys. Rev. E 63, 061301 (2001).
[21] A. Barrat and V. Loreto, Europhys. Lett. 53, 297 (2001).
[22] J. J. Brey and A. Prados, J. Phys. Condens. Matter 14, 1489

(2002).
[23] P. Richard, M. Nicodemi, R. Delannay, P. Ribière, and D. Bideau,

Nat. Mater. 4, 121 (2005).
[24] Ph. Ribière, P. Richard, P. Philippe, D. Bideau, and R. Delannay,

Eur. Phys. J. E 22, 249 (2007).
[25] A. J. Kovacs, Fortschr. Hochpolym. Forsch. 3, 394 (1963).
[26] A. J. Kovacs, J. J. Aklonis, J. M. Hutchinson, and A. R. Ramos,

J. Polym. Sci., Part B, Polym. Phys. 17, 1097 (1979).
[27] S. A. Brawer, Phys. Chem. Glasses 19, 48 (1978).
[28] L. Berthier and J. P. Bouchaud, Phys. Rev. B 66, 054404 (2002).
[29] S. Mossa and F. Sciortino, Phys. Rev. Lett. 92, 045504 (2004).
[30] G. Aquino, A. Allahverdyan, and T. M. Nieuwenhuizen, Phys.

Rev. Lett. 101, 015901 (2008).
[31] A. Prados and J. J. Brey, J. Stat. Mech. (2010) P02009.
[32] E. Bouchbinder and J. S. Langer, Soft Matter 6, 3065 (2010).
[33] G. Diezemann and A. Heuer, Phys. Rev. E 83, 031505 (2011).
[34] M. Ruiz-Garcı́a and A. Prados, Phys. Rev. E 89, 012140 (2014).
[35] J. F. Lutsko, Phys. Rev. E 63, 061211 (2001).
[36] J. J. Brey, M. J. Ruiz-Montero, and F. Moreno, Phys. Rev. E 69,

051303 (2004).
[37] A. Prados and E. Trizac, Phys. Rev. Lett. 112, 198001 (2014).
[38] N. V. Brilliantov and T. Pöschel, Europhys. Lett. 74, 424 (2006).
[39] L. Landau and E. Lifshitz, Physical Kinetics (Pergamon, New

York, 1981).
[40] E. Trizac, Phys. Rev. Lett. 88, 160601 (2002).
[41] J. Piasecki, E. Trizac, and M. Droz, Phys. Rev. E 66, 066111

(2002).
[42] There is a typo in the expression for B in Ref. [16], specifically

in the sign of the term in the denominator proportional to (62 −
30α), which has been corrected upon writing Eq. (17).

[43] It can be noted that under the stochastic forcing with drag
studied in Ref. [48], the excess kurtosis also changes sign at
α = 1/

√
2, keeping a functional dependence on α that is close

to that considered here.
[44] G. Bird, Molecular Dynamics and the Direct Simulation of Gas

Flows (Clarendon, Oxford, 1994).

[45] A long enough tw is easily attained by starting from a high
enough initial value of the driving ξ0, that is, a high enough
granular temperature.

[46] For α = 0.8, the theoretical estimates of the excess kurtosis
are aHCS

2 = −0.02243 and as
2 = −0.01349, so that aHCS

2 − as
2 =

−0.00895, while the simulation values are aHCS
2 = −0.02635

and as
2 = −0.01495, which lead to aHCS

2 − as
2 = −0.01140.

[47] Note, however, that for the moment n = 1 (related to the
collision frequency), the inequality is reversed. The change of
sign of the correction, between n = 1 and n = 3, illustrates
the subtleness of the effect. Platykurtic shapes exhibit depleted
distributions for small velocities, then an enhanced population
around the thermal scale, and again depletion for slightly larger
velocities (not considering the truly large velocity tail, which
does not matter here and which is overpopulated [7,62]). It is
the balance of these over- and underpopulations that leads to
Eq. (36). Note also that Eq. (36) explains the presence of the
contribution 3a2/16 in Eq. (7) (see also [7]).

[48] M. G. Chamorro, F. Vega-Reyes, and V. Garzó, J. Stat. Mech.
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