

Paris-Sud / Paris-Saclay University M1 General Physics Year 2018-2019 STATISTICAL PHYSICS Final exam 2019

Should be written on a separate paper. Concise but explicative answers expected throughout. No bonus for verboseness

Symmetry breaking in a mechanical model for phase transitions

An airtight hollow tube, shown in grey on the figure, is bent in a circular arc of radius R with section S. In the tube, there is a movable but gastight piston on which gravitational force mg acts. The piston separates two

chambers (left/right) each containing N ideal gas molecules. Its motion is frictionless. The angular position of the piston is θ . The tube is closed at both ends so that $-\theta_0 \leq \theta \leq \theta_0$. The volume on both sides of the piston read $SR(\theta_0 - \theta)$ and $SR(\theta_0 + \theta)$. The gravitational energy of the gas will be neglected throughout; temperature T is uniform and fixed.

1) What is the pressure of the gas in each chamber ? Write the mechanical equilibrium position condition for the piston position, in the form

$$\sin\theta = \frac{T}{T_c}f(\theta),\tag{1}$$

where T_c is some constant and f some function to be specified, chosen such that $f(\theta)/\theta \to 1$ for $\theta \to 0$. Check that your results do not depend on S.

- **2**) Sketch a graph of $f(\theta)$ for $-\theta_0 \leq \theta \leq \theta_0$.
- **3**) For both $T \leq T_c$ and $T \geq T_c$, plot schematically the solutions to Eq. (1), that we shall denote θ_{eq} .
- 4) We assume here that T is close to T_c so that $|\theta| \ll \theta_0$ and $f(\theta)$ can be linearized. Show then that $|\theta_{eq}| \propto |T T_c|^{\beta}$. For which case $T \leq T_c$ or $T \geq T_c$ is this behaviour observed ? What is β ?
- 5) The mechanical setup studied here can be viewed as a metaphor for a phase transition; in which system and of which type? What would the order parameter be in the present case? Discuss the analogy.
- 6) We wish to discuss the stability of the $\theta = 0$ solution. Write the equation of motion of the piston as a differential equation for θ . Conclude on the stability.
- 7) Our goal next is to recover previous results from thermodynamics considerations. What is the internal energy and the entropy of the gas (assumed monoatomic, although that is not essential)?
- 8) Assuming again that $|\theta| \ll \theta_0$, write the free energy of the total system (gas and piston), as

$$F(\theta, T) = F_0(T) + \frac{a_2}{2}\theta^2 + \frac{a_4}{4}\theta^4 + \mathcal{O}(\theta^6).$$
(2)

What are a_2 and a_4 ? How are they related to the results of question 6? Recover T_c , β , and the stability condition of the $\theta = 0$ solution from this analysis.

- 9) For arbitrary (non small θ), compute $\frac{\partial^2 F}{\partial \theta^2}$ for $\theta = 0$. Recover the above stability condition.
- **10**) By a means which is not specified here, a constant force is applied to the piston, tangentially to its direction of motion, so that Eq. (1) becomes

$$\sin\theta = \frac{T}{T_c}f(\theta) - h,\tag{3}$$

where h is constant and does not depend on angular position θ . Discuss the situation $T < T_c$, when h is changed, sweeping negative to positive values. It is convenient here to consider the free energy $F(\theta)$, for several values of h.

- 11) How would it be possible to define a susceptibility ?
- 12) We assume that the gas is no longer ideal. The left chamber contains $N(1 \epsilon)$ molecules while the right has $N(1 + \epsilon)$, with $\epsilon > 0$. At a certain temperature, a droplet of liquid is found in the right chamber, coexisting with its vapor. In which physical state is the left chamber (vapor, liquid...)?

Reference: *An Exactly Solvable Model Exhibiting a Landau Phase Transition*, R. Alben, American Journal of Physics **40**, 3 (1972).