

2 HOURS 15 MINUTES

DOCUMENTS, POCKET CALCULATORS AND ANY ELECTRONIC DEVICE <u>NOT ALLOWED</u> Concise but explicative answers expected throughout. No bonus for verboseness

1 Basic questions

- 1) Statistical physics treatments of phase transitions do not go without problems. What are the main ones?
- 2) Why is Ising model of particular interest in Physics?
- **3)** What are liquid crystals? For studying the isotropic-nematic transition of liquid crystals *confined in a planar membrane*, what would the order parameter be?
- 4) What could we call the ideal magnet equation of state, in a magnetic field B at temperature T? Start from writing explicitly the Hamiltonian and then derive such a relation, in a canonical ensemble calculation.
- 5) We consider an arbitrary system of interacting spins in an external magnetic field, at a fixed temperature *T*. Relate the mean magnetization to the free energy. What are the "natural" variables for the free energy?
- 6) In a magnetic system, how is c_B , the specific heat at fixed magnetic field, related to the free energy F and the temperature T?
- 7) Same question as above, for c_M , the specific heat at fixed magnetization. What is here the relevant thermodynamic potential? How is it related to the free energy of the previous question?
- 8) Sketch graphically the Legendre transform of function A in the graph below.
- 9) Same question for function B. Do you obtain the graph of a function? Why?

10) Compute

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} \tag{1}$$

by two methods, one of them using the residue theorem.

2 Gaussian calculus

We consider a Gaussian random variable x with mean m and standard deviation σ . From this probability density function, we define the average denoted below by brackets.

- 1) Compute $\langle e^x \rangle$. Compare to $e^{\langle x \rangle}$. Does the corresponding inequality depend on the Gaussian statistics? When do we have equality? Explain.
- 2) Compute $\langle e^{-x} \rangle$.
- 3) In the remainder, we set m = 0. Relate $\langle xf(x) \rangle$ to $\langle \frac{\partial f}{\partial x} \rangle$, where f is an "arbitrary" function.
- 4) Use the above result to compute $\langle x^4 \rangle$, and $\langle x^6 \rangle$.
- **5)** What is $\langle x^n \rangle$ for an integer *n*?
- 6) Recover then the result of the first question for $\langle e^x \rangle$ by a Taylor expansion argument.

3 Magnetic domain walls

In a magnetic system, the local mean magnetization m can be a function of a Cartesian coordinate x. The boundary conditions are such that $m \to -1$ for $x \to -\infty$ while $m \to 1$ for $x \to \infty$. How can such boundary conditions be achieved experimentally?

 \diamond

We do not assume any particular form for the underlying Hamiltonian, but we instead write the total free energy \mathcal{F} of the system as a functional of m(x), such that

$$\mathcal{F} = \int \left\{ -\frac{1}{2}m^2 + \frac{1}{4}m^4 + \frac{1}{2}\left(\frac{dm}{dx}\right)^2 \right\} dx.$$
 (2)

How can one proceed to find the optimal profile $m^*(x)$, compatible with the boundary conditions? Write $m^*(x)$ explicitly.