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A. Qualitative questions

1) In this case, any Ising spin can be in one of two states, so that a connection presumably requires ¢ = 2.

2) We should have kT, on the order of the relevant energy scale in the model, that is J. This leaves
unspecified the ¢ dependence. We expect T, to increase with ¢, to balance enhanced order.

3) When T is large, all g states are equally populated.

B. Limiting cases, order parameter and connection to Ising model

4) When all fields h, = 0 (x = 1,...q), all spins align to the same value; the ground state is g-fold
degenerate.

5) All spins should be in state 1. There is a unique ground state.
6) The previous conclusion is unaffected.
7) The previous conclusion is unaffected.

8) If all fields h,, # 0, we have to find the largest, that will “pin” the system, and lead to a unique ground
state.

a) Here hy > 0 while all other fields vanish. When hy — 0, we have (x) — 1/q, while when h; becomes
large, we will get (z) — 1.
b) The disordered situation is for h; — 0 while large h; leads to order (all spins alike).

c) We therefore propose the order parameter
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9) We assume g = 2.
a) One can associate states 0 = +1to 0 =1 and o) = —1 to 0 = 2. Making use of the identities
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The square bracket in (4) is an immaterial constant.

b) For ¢ = 2 we thus expect a second order phase transition.



C. The one-dimensional setting : transfer matrix and renormalization
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the partition function is

N
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Introducing the g x ¢ transfer matrix T such that

T(os,05) = exp (6J5Ui,gj) (8)
we can write

Z = Tr(TV) (9)
For the case ¢ = 3, this gives :
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For ¢ > 3, the structure is the same, with exponential terms on the diagonal, and 1 on every non-
diagonal entry.

T is a so-called circulant matrix, and therefore simple to diagonalize. It is seen that T admits the
eigenvector |+) = (1,1,1), with eigenvalue ¢, = e/ 4 2. The other eigenvalue is two-fold degenerate.
Since we know the trace, we readily find that its value is t_ = e/ — 1. The two associated eigen-
vectors, which have to be perpendicular to |+) are !(1,—1/2,—1/2) and !(—1/2,1,—1/2). Note that
t_ < t,. Another possibly more convenient choice is to take these eigenvectors as *(0,1, —1)/v/2 and
80, -1,1)/V2.

In the general case,
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The eigenvalues being know, the trace of TV follows :
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In the thermodynamic limit, the free energy per spin is

Bf = —log (eﬁ‘] + 2.) (13)

This expression is analytic in T'; there is no phase transition, which is expected (one dimensional
model with short range interactions).

The results generalize to arbitrary q :
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See the transfer matrix procedure for the Ising model, seen during the tutorials.

The correlation length is finite at all temperatures ; there is no phase transition. Yet, it appears that
& — oo when T' — 0, so that we may consider that the system exhibits a transition strictly at T" = 0.



