The Potts model - correction

A. Qualitative questions

1) In this case, any Ising spin can be in one of two states, so that a connection presumably requires $q=2$.
2) We should have $k T_{c}$ on the order of the relevant energy scale in the model, that is J. This leaves unspecified the q dependence. We expect T_{c} to increase with q, to balance enhanced order.
3) When T is large, all q states are equally populated.

B. Limiting cases, order parameter and connection to Ising model

4) When all fields $h_{\mu}=0(\mu=1, \ldots q)$, all spins align to the same value; the ground state is q-fold degenerate.
5) All spins should be in state 1 . There is a unique ground state.
6) The previous conclusion is unaffected.
7) The previous conclusion is unaffected.
8) If all fields $h_{\mu} \neq 0$, we have to find the largest, that will "pin" the system, and lead to a unique ground state.
a) Here $h_{1}>0$ while all other fields vanish. When $h_{1} \rightarrow 0$, we have $\langle x\rangle \rightarrow 1 / q$, while when h_{1} becomes large, we will get $\langle x\rangle \rightarrow 1$.
b) The disordered situation is for $h_{1} \rightarrow 0$ while large h_{1} leads to order (all spins alike).
c) We therefore propose the order parameter

$$
\begin{equation*}
m=\frac{q\langle x\rangle-1}{q-1} . \tag{1}
\end{equation*}
$$

9) We assume $q=2$.
a) One can associate states $\sigma^{(\mathrm{I})}=+1$ to $\sigma=1$ and $\sigma^{(\mathrm{I})}=-1$ to $\sigma=2$. Making use of the identities

$$
\begin{equation*}
\delta_{\sigma_{i}^{(\mathrm{I})}, \sigma_{j}^{(\mathrm{I})}}=\frac{1+\sigma_{i}^{(\mathrm{I})} \sigma_{j}^{(\mathrm{I})}}{2}, \quad \delta_{\sigma_{i}^{(\mathrm{I})},+1}=\frac{1+\sigma_{i}^{(\mathrm{I})}}{2}, \quad \delta_{\sigma_{i}^{(\mathrm{I})},-1}=\frac{1-\sigma_{i}^{(\mathrm{I})}}{2} \tag{2}
\end{equation*}
$$

we get

$$
\begin{align*}
H & =-\sum_{i, j=1}^{N} J_{i, j} \frac{1+\sigma_{i}^{(\mathrm{I})} \sigma_{j}^{\mathrm{I})}}{2}-h_{1} \sum_{i=1}^{N} \frac{1+\sigma_{i}^{(\mathrm{I})}}{2}-h_{2} \sum_{i=1}^{N} \frac{1-\sigma_{i}^{(\mathrm{I})}}{2} \tag{3}\\
& =-\sum_{i, j=1}^{N} \frac{J_{i, j}}{2} \sigma_{i}^{(\mathrm{I})} \sigma_{j}^{(\mathrm{I})}-\frac{h_{1}-h_{2}}{2} \sum_{i=1}^{N} \sigma_{i}^{(\mathrm{I})}-\left[\frac{1}{2} \sum_{i, j=1}^{N} J_{i, j}+N \frac{h_{1}+h_{2}}{2}\right] . \tag{4}
\end{align*}
$$

By identification :

$$
\begin{equation*}
H\left(\sigma_{1}^{(\mathrm{I})}, \ldots, \sigma_{N}^{(\mathrm{I})}\right)=-\sum_{i, j=1}^{N} J_{i, j}^{(\mathrm{I})} \sigma_{i}^{(\mathrm{I})} \sigma_{j}^{(\mathrm{I})}-h^{(\mathrm{I})} \sum_{i=1}^{N} \sigma_{i}^{(\mathrm{I})} \quad \text { with } \quad J_{i, j}^{(\mathrm{I})}=\frac{J_{i, j}}{2} \quad \text { and } \quad h^{(\mathrm{I})}=\frac{h_{1}-h_{2}}{2} \tag{5}
\end{equation*}
$$

The square bracket in (4) is an immaterial constant.
b) For $q=2$ we thus expect a second order phase transition.

C. The one-dimensional setting : transfer matrix and renormalization

10) With

$$
\begin{equation*}
H\left(\sigma_{1}, \ldots, \sigma_{N}\right)=-J \sum_{i=1}^{N} \delta_{\sigma_{i}, \sigma_{i+1}} \tag{6}
\end{equation*}
$$

the partition function is

$$
\begin{equation*}
Z=\sum_{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}} \prod_{i=1}^{N} \exp \left(\beta J \delta_{\sigma_{i}, \sigma_{i+1}}\right) \tag{7}
\end{equation*}
$$

11) Introducing the $q \times q$ transfer matrix \mathbb{T} such that

$$
\begin{equation*}
\mathbb{T}\left(\sigma_{i}, \sigma_{j}\right)=\exp \left(\beta J \delta_{\sigma_{i}, \sigma_{j}}\right) \tag{8}
\end{equation*}
$$

we can write

$$
\begin{equation*}
Z=\operatorname{Tr}\left(\mathbb{T}^{N}\right) \tag{9}
\end{equation*}
$$

For the case $q=3$, this gives :

$$
\mathbb{T}=\left(\begin{array}{ccc}
e^{\beta J} & 1 & 1 \tag{10}\\
1 & e^{\beta J} & 1 \\
1 & 1 & e^{\beta J}
\end{array}\right)
$$

For $q>3$, the structure is the same, with exponential terms on the diagonal, and 1 on every nondiagonal entry.
12) \mathbb{T} is a so-called circulant matrix, and therefore simple to diagonalize. It is seen that \mathbb{T} admits the eigenvector $|+\rangle={ }^{t}(1,1,1)$, with eigenvalue $t_{+}=e^{\beta J}+2$. The other eigenvalue is two-fold degenerate. Since we know the trace, we readily find that its value is $t_{-}=e^{\beta J}-1$. The two associated eigenvectors, which have to be perpendicular to $|+\rangle$ are ${ }^{t}(1,-1 / 2,-1 / 2)$ and ${ }^{t}(-1 / 2,1,-1 / 2)$. Note that $t_{-}<t_{+}$. Another possibly more convenient choice is to take these eigenvectors as ${ }^{t}(0,1,-1) / \sqrt{2}$ and ${ }^{t}(0,-1,1) / \sqrt{2}$.
In the general case,

$$
\begin{equation*}
t_{+}=e^{\beta J}+q-1, \quad t_{-}=e^{\beta J}-1 . \tag{11}
\end{equation*}
$$

13) The eigenvalues being know, the trace of \mathbb{T}^{N} follows:

$$
\begin{equation*}
Z=t_{+}^{N}+2 t_{-}^{N}=\left(e^{\beta J}+2\right)^{N}+2\left(e^{\beta J}-1\right)^{N} \tag{12}
\end{equation*}
$$

14) In the thermodynamic limit, the free energy per spin is

$$
\begin{equation*}
\beta f=-\log \left(e^{\beta J}+2 .\right) \tag{13}
\end{equation*}
$$

This expression is analytic in T; there is no phase transition, which is expected (one dimensional model with short range interactions).
15) The results generalize to arbitrary q :

$$
\begin{equation*}
t_{+}=e^{\beta J}+q-1, \quad t_{-}=e^{\beta J}-1, \quad Z=\left(e^{\beta J}+q-1\right)^{N}+(q-1)\left(e^{\beta J}-1\right)^{N} \tag{14}
\end{equation*}
$$

16) See the transfer matrix procedure for the Ising model, seen during the tutorials.
17) The correlation length is finite at all temperatures; there is no phase transition. Yet, it appears that $\xi \rightarrow \infty$ when $T \rightarrow 0$, so that we may consider that the system exhibits a transition strictly at $T=0$.
