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Final exam 2022 / short correction

A Normal and anomalous phase behaviour

1) The three-dimensional (P,V,T) phase diagram of water is sketched in Fig. 1.

Figure 1: 3D representation of water phase behaviour in
a pressure-volume-temperature diagram

triple point
(line)

2) For water, the specific volume of the solid is larger than that of the liquid, which results in a negative slope
for the coexistence line in the (P, T) diagram. For a normal substance, this inequality is reversed, which
results in the diagram given in Fig. 2

Figure 2: Case of a normal substance. Note the differ-
ence now concerning the solid-liquid coexistence region.
There is a temperature window for which at a given T, the
three phases may be found, depending on the pressure.
The distinction between vapor and gas is not important.
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C Mean-field approximation for the Potts model

1)
2)

3)

4)

5)

6)

The coordination number is z = 6.

The way to approach this is the same as for the Ising model on the regular square lattice, where we use the
trick S; — S; —m + m and we rewrite the Hamiltonian in terms of (S; — m), subsequently ignoring factors
in (S; —m)(S; —m). We get:

Hyp =-J Y (2(Si—=m)+m?) —B)_S; (1)
(i) i

We rewrite it as:

JNz
HMF:—szZS,-Jr 5 mz—BZSi )
7 7
The partition function can be computed:

ZMF = e_ﬁJNZmTQ (l—i—QCosh(ﬁ(sz"‘B)))Nv ©)

from which the free energy follows

Jzm?
F=N — kTN log[1 + 2cosh(B(Jzm + B))]. 4)
The magnetization is obtained by using:
1 8 log ZMF
- 5
"= BN 9B )
which gives:
o 2sinh(5(Jzm + B)) . ©)
1+ 2cosh(B(Jzm + B))
If the factor 1 were absent, we would recover the usual Ising model.
At B = 0, m obeys
2sinh(5(Jzm)) )

"I 2cosh(B(Jzm))’

and we note that the value m = 0 is always a solution of the self-consistent equation. Given the shape of
the function of m on the right-hand side (linear at the origin, and saturating at large |m|), we get the critical
temperature when the slope at the origin is unity

208.Jz 3 2
1= —- . =—— ; kpT.=-=J 8
3 = Pe=a Ble =372 ®)
The free energy is, for B = 0,
Jm? kT
f= % - % log [1 4 2 cosh(SJzm)] )

Using T’ = T,(1 + t) and zJ = 3kpT./2, we have

Jm? 2 3m
f:2—3J(1+t)log{1+200sh<2(1+t)>]. (10)




7)

Using log(1 + 2 cosh(ax)) ~ log(3) + %xz - %$4’ we get:

Jm2 2 J m? 3m?
= 2 _ZJ1+t)log3— < 11
/ o~ 3 Dles - o I (b
2 J t 3m*
= —ZJ(1+t)log3 + Zm? J . 12
g/ Dloed + om 4 T (12)

The first term (with the log 3) is immaterial, since it does not depend on m. The second tells us that the
free energy changes convexity at ¢ = 0, which is a restatement of the fact that £ = 0 defines the critical
temperature. For consistency, we truncate the expansion to leading order in ¢:

2 J 3m?
= —ZJ1+1t)1 ~m2t i 1
f 3J(+)0g3+2m +J32 (13)

Taking the derivative wrt m yields the equation obeyed by the spontaneous magnetization

3
0= Jmt + J?’Tm. (14)

The non-vanishing root is
m = £/ 83 (15)

This yields 5 = 1/2.

Following Curie-Weiss treatment, we start by studying independent spins in a field B, for which the proba-

bilities to find a given spin in state S = —1, 0 or 1 are
o8BS
S) = 16
from which we get the magnetization per spin:
2sinh(8B)
= Sp(lS) = ———————. 17
" Z p(5) 1+ 2cosh(5B) 17)

S=-1,0,1

The second step is to average the local field felt at a given lattice site ¢, thereby neglecting site to site
fluctuations, as B + zJm, exactly as on the square lattice for Ising model. The third step is to replace B in
Eq. (17) by B + zJm, and we recover the self-consistent relation for m.



