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A Normal and anomalous phase behaviour

1) The three-dimensional (P,V,T) phase diagram of water is sketched in Fig. 1.
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Figure 1: 3D representation of water phase behaviour in
a pressure-volume-temperature diagram

2) For water, the specific volume of the solid is larger than that of the liquid, which results in a negative slope
for the coexistence line in the (P,T) diagram. For a normal substance, this inequality is reversed, which
results in the diagram given in Fig. 2

Figure 2: Case of a normal substance. Note the differ-
ence now concerning the solid-liquid coexistence region.
There is a temperature window for which at a given T , the
three phases may be found, depending on the pressure.
The distinction between vapor and gas is not important.
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C Mean-field approximation for the Potts model

1) The coordination number is z = 6.

2) The way to approach this is the same as for the Ising model on the regular square lattice, where we use the
trick Si → Si−m+m and we rewrite the Hamiltonian in terms of (Si−m), subsequently ignoring factors
in (Si −m)(Sj −m). We get:

HMF = −J
∑
〈ij〉

(
2(Si −m) +m2

)
−B

∑
i

Si (1)

We rewrite it as:
HMF = −Jzm

∑
i

Si +
JNz

2
m2 −B

∑
i

Si (2)

3) The partition function can be computed:

ZMF = e−βJNz
m2

2 (1 + 2 cosh(β(Jzm+B)))N , (3)

from which the free energy follows

F = N
Jzm2

2
− kBTN log [1 + 2 cosh(β(Jzm+B))] . (4)

4) The magnetization is obtained by using:

m =
1

βN

∂ logZMF

∂B
(5)

which gives:

m =
2 sinh(β(Jzm+B))

1 + 2 cosh(β(Jzm+B))
. (6)

If the factor 1 were absent, we would recover the usual Ising model.

5) At B = 0, m obeys

m =
2 sinh(β(Jzm))

1 + 2 cosh(β(Jzm))
, (7)

and we note that the value m = 0 is always a solution of the self-consistent equation. Given the shape of
the function of m on the right-hand side (linear at the origin, and saturating at large |m|), we get the critical
temperature when the slope at the origin is unity

1 =
2βcJz

3
=⇒ βc =

3

2Jz
; kBTc =

2

3
Jz (8)

6) The free energy is, for B = 0,

f =
Jm2

2
− kBT

z
log [1 + 2 cosh(βJzm)] (9)

Using T = Tc(1 + t) and zJ = 3kBTc/2, we have

f =
Jm2

2
− 2

3
J(1 + t) log

[
1 + 2 cosh

(
3m

2(1 + t)

)]
. (10)
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Using log(1 + 2 cosh(ax)) ∼ log(3) + a2

3 x
2 − a4

36x
4, we get:

f =
Jm2

2
− 2

3
J(1 + t) log 3− J

2

m2

1 + t
+ J

3m4

32(1 + t)2
(11)

= −2

3
J(1 + t) log 3 +

J

2
m2 t

1 + t
+ J

3m4

32(1 + t)2
. (12)

The first term (with the log 3) is immaterial, since it does not depend on m. The second tells us that the
free energy changes convexity at t = 0, which is a restatement of the fact that t = 0 defines the critical
temperature. For consistency, we truncate the expansion to leading order in t:

f = −2

3
J(1 + t) log 3 +

J

2
m2 t + J

3m4

32
. (13)

Taking the derivative wrt m yields the equation obeyed by the spontaneous magnetization

0 = J m t + J
3m3

8
. (14)

The non-vanishing root is
m = ±

√
−8t/3 (15)

This yields β = 1/2.

7) Following Curie-Weiss treatment, we start by studying independent spins in a field B, for which the proba-
bilities to find a given spin in state S = −1, 0 or 1 are

p(S) =
eβBS

eβB + 1 + e−βB
, (16)

from which we get the magnetization per spin:

m =
∑

S=−1,0,1
S p(S) =

2 sinh(βB)

1 + 2 cosh(βB)
. (17)

The second step is to average the local field felt at a given lattice site i, thereby neglecting site to site
fluctuations, as B + zJm, exactly as on the square lattice for Ising model. The third step is to replace B in
Eq. (17) by B + zJm, and we recover the self-consistent relation for m.
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