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P
roperties of the ‘electron gas’—in which conduction
electrons interact by means of Coulomb forces but ionic
potentials are neglected—change dramatically depending

on the balance between kinetic energy and Coulomb repulsion.
The limits are well understood1. For very weak interactions
(high density), the system behaves as a Fermi liquid, with
delocalized electrons. In contrast, in the strongly interacting
limit (low density), the electrons localize and order into a Wigner
crystal phase. The physics at intermediate densities, however,
remains a subject of fundamental research2–8. Here, we study
the intermediate-density electron gas confined to a circular
disc, where the degree of confinement can be tuned to control
the density. Using accurate quantum Monte Carlo techniques9,
we show that the electron–electron correlation induced by an
increase of the interaction first smoothly causes rings, and then
angular modulation, without any signature of a sharp transition
in this density range. This suggests that inhomogeneities in
a confined system, which exist even without interactions, are
significantly enhanced by correlations.

Quantum dots10—a nanoscale island containing a puddle of
electrons—provide a highly tunable and simple setting to study
the effects of large Coulomb interaction. They introduce level
quantization and quantum interference in a controlled way, and
can, in principle, be made in the very-low-density regime, where
correlation effects are strong11. In addition, there are natural
parallels between quantum dots and other confined systems of
interacting particles, such as cold atoms in traps.

Therefore, we consider a model quantum dot consisting of
electrons moving in a two-dimensional (2D) plane, with kinetic
energy (−(1/2)

∑
i ∇

2
i ), and interacting with each other by long-

range Coulomb repulsion (
∑

i<j |ri − rj|
−1). Here electrons are

labelled by i, their positions are ri, and all energies are expressed in
atomic units, defined by h̄ = e2/ǫ = m∗ = 1 (with electronic charge
e, effective mass m∗, and dielectric constant ǫ). The electrons are
confined by an external quadratic potential Vext(r) = (1/2)ω2r2

with circular symmetry and spring constant ω. The ratio between
the strength of the Coulomb interaction and the kinetic energy is
usually characterized by the interaction parameter rs ≡ (πn)−1/2,

with n being the density of electrons. For our confined system in
which n(r) varies, we define rs in the same way using the mean
density n̄ ≡

∫
n2(r)dr/N . We have studied this system up to N =20

electrons. The spring constant ω makes the oscillator potential
narrow (for large ω) or shallow (for small ω); it thereby tunes
the average density of electrons between high and low values, thus
controlling rs. For example, for N = 20, varying ω between 3 and
0.0075 changes rs from 0.4 to 17.7. The radius of the dot grows
significantly as rs increases, in an approximately linear fashion
(see Fig. 1).

In the bulk 2D electron gas, numerical work suggests a
transition from a Fermi-liquid state to a Wigner crystal around
rc

s ≈ 30–35 (refs 2–4,8). On the other hand, experiments on the 2D
electron gas (which include, of course, disorder and residual effects
of the ions) show more-complex behaviour, including evidence for
a metal–insulator transition5.

Circular quantum dots have been studied previously using a
variety of methods, yielding a largely inconclusive scenario. Many
studies12–14 have used density functional theory or the Hartree–
Fock method. These typically predict charge or spin-density-wave
order even for modest rs (unless the symmetry is restored after the
fact14), which are thought to be unphysical. Exact diagonalization
calculations15,16 can be highly accurate but are restricted to small
N and rs. Path-integral quantum Monte Carlo (PIMC) has also
been applied: Egger et al.17,18 found a crossover from Fermi liquid
to ‘Wigner molecule’ at rs ≈ 4—a value significantly smaller than
the 2D bulk rc

s . Another study19, using different criteria, found a
two-stage transition for rs larger than rc

s . Although PIMC treats
interactions accurately, it has its own systematic and statistical
problems; for instance, it generates a thermal average of states with
different L and S quantum numbers, only preserving Sz symmetry.
To avoid these various difficulties and to clarify the scenario,
we have carried out a study using the variational Monte Carlo
(VMC) and diffusion Monte Carlo (DMC) techniques9, which
we used previously to study both circular20–22 and irregular23 dots
at rs ∼ 2. This method is free of the problems of PIMC but is
approximate in that a ‘fixed-node’ error is made. We believe that
the fixed-node error is small for the range of parameters studied
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Figure 1 Electron density, n(r), for the ground state of an N= 20 circular quantum dot (L= 0, S= 0). The extrapolated quantum Monte Carlo (QMC) estimator is used9.

a, High density: rs ≈ 0.4 (ω = 3.0). b, Low density: rs ≈ 15 (ω = 0.01). Note the dramatic change in density profile with increasing rs: the electron–electron correlation

caused by stronger interactions at low density produces sharp rings. The three-ring structure agrees with that seen in the classical limit. Note the significant increase in the

radius of the dot for larger rs: it changes from approximately 2.75 to 80 (in atomic units) by increasing rs from 0.4 to 15. c, Radial cut of n(r) for rs ≈ 10 (ω = 0.02), where

the three-ring structure is about to appear. The modulation is quantitatively characterized by the fractional peak height (FPH): draw the line tangential to the two outer peaks

of n(r) (DE), then find the vertical line AC along which the distance from DE to n(r) is maximum, and finally define the FPH as the ratio of the two lengths AB/AC. d, FPH as a

function of rs for N= 20 and 7. The curve for N= 20 is linear and completely featureless for rs <∼ 18. The solid line is a linear fit to the data. For smaller N, radial modulation

in n(r) becomes stronger, leading to FPH → 1 for large rs, and a deviation from linearity occurs (the dotted line ∼r 0.41
s is the best fit for N= 7). For our largest rs, the FPH

typically grows with decreasing N, although not always monotonically. For example, FPH is largest for N= 7, which yields a ‘perfect crystal’ with equidistant electrons, and

thus produces a peak in the addition energy (see Fig. 3a). The Monte Carlo statistical error is less than the size of the points.

here (see the Methods section, and the detailed comparison in the
Supplementary Information).

Results for the electron density, n(r), are shown in Fig. 1. There
is a dramatic change in n(r) on increasing interaction strength: for
weak interactions (Fig. 1a), the density is rather homogeneous; the
small modulation seen is caused by shell effects in the orbitals of
the mean-field problem. In contrast, large rs induces strong radial
modulation in n(r) (Fig. 1b), resulting in the formation of rings.
Interestingly, for rs > 10 the number of rings for each N is the
same as that seen in the classical limit24,25 (rs → ∞), for example,
three rings for N = 20. In all of the cases we consider, the density
n(r) is circularly symmetric, as is the density of spin-up and spin-
down electrons separately, as required in two-dimensional systems,
because we work with states of definite angular momentum L.

We find that the formation of rings, and the increase in their
sharpness is completely smooth. This is shown quantitatively in

Fig. 1d by using the fractional peak height (FPH, defined in Fig. 1c)
of the outer ring to characterize the degree of structure. In the
resulting curve for FPH as a function of rs, no deviations or special
value of rs can be seen.

Having established the role of strong correlations in the
formation of radial rings, which may be detectable in scanning-
probe measurements, we turn to angular modulation—the issue
of correlation-induced localization of the individual electrons in
each of the circular rings. We therefore consider the pair densities
gσσ′ (r0;r)—the probability of finding an electron with spin σ ′ at
location r when an electron with spin σ is held fixed at r0—and
gT = g↑↑ + g↑↓. In addition to radial rings, these detect any angular
structure induced by the interactions.

The most prominent feature in the pair density is a hole around
the location of the fixed electron. For unlike spins, it is caused
purely by Coulomb repulsion (correlation hole), whereas for like
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Figure 2 Pair density of the circular quantum dot with an up-electron fixed on the outer ring. a, g↑↓(r0;r) and b, g↑↑(r0;r) for the N= 20 ground state (L= 0, S= 0)

with rs ≈ 15 (ω = 0.01, r0 = (57,0)). Short-range order develops near the fixed electron, indicating ‘incipient’ Wigner localization but not true long-range order. c, Evolution

of angular oscillations along the outer ring with rs and N. The top trace shows 0.65× gT for rs ≈ 6, N= 20: although strong radial modulation has already appeared, leading

to ‘ring formation’, there is almost no angular modulation. The middle trace is gT for rs ≈ 15, N= 20: clear angular structure is present, although compared with the ring

modulation it is weak and short range. Spin-resolved angular structure is also shown here; note the peculiar bump at θ = π. The bottom trace is gT for rs ≈ 16, N= 6

(L= 0, S= 0): for small N, angular modulation is clearly stronger. (The y axis is shifted and scaled for N= 20 for clarity.)

spins the antisymmetry of the wavefunction plays an important
role (exchange hole). For small rs, correlation is weak, so the
hole in gσ,−σ is much smaller than that in gσ,σ . As rs increases,
the correlation hole grows bigger, becoming the same size as the
exchange hole around rs ≈ 4–5.

Results for the pair density in the circular quantum dot
are shown in Fig. 2 for an up-electron fixed on the outer
ring. For N = 20 at large rs, there are clear oscillations along
the angular direction near r0. This signals ‘incipient’ Wigner
localization. However, these oscillations are weak (weaker than the
radial modulation) and short ranged (damped), indicating that
long-range order is not yet established. As for radial modulation,
the amplitude of the angular oscillations grows continuously,
without any threshold value.

The evolution of the angular oscillations as a function of rs and
N is illustrated in Fig. 2c. Comparing the top two traces, for rs ≈ 6
and 15 at N = 20, we see that gT is almost featureless, even for an rs

substantially larger than 1, whereas short-range oscillations have set
in by our largest rs. The weakness of these oscillations suggests that

electrons remain more or less delocalized along the ring for N =20,
up to the largest rs studied. An intriguing feature of the spin-
resolved pair densities shown is the bump at θ = π: g↑↑ decreases
while g↑↓ increases. This feature is present for all rs ≥ 4, and grows
with increasing interaction strength; we have no explanation for
it at this time. Turning now to smaller N , we find that two rings
are present for N = 6 at large rs: the outer ring has five electrons,
whereas the remaining electron is at the centre. The lower trace in
Fig. 2c shows that individual electrons are better localized for small
N , a behaviour that we find holds quite generally.

Next, we turn our attention to the addition energy, �2E(N ) =

EG(N + 1) + EG(N − 1) − 2EG(N ), where EG(N ) is the ground
state energy of the dot with N electrons. This is accessible
experimentally as the spacing between conductance peaks in a
Coulomb blockade-transport measurement, and is given by the
charging energy in the simplest model of a quantum dot10. Our
results for �2E(N ) (normalized by ω) for different interaction
strengths are shown in Fig. 3 (rs for fixed ω varies slightly with
N). For rs ≈ 2, �2E(N ) is similar to that of previous studies12,20,21:
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Figure 3 Ground-state energy. a, Addition energy (normalized) as a function of N for three different ω and for the classical limit24 rs → ∞. As interactions strengthen

because of decreasing ω, the mesoscopic fluctuations in �2E become weaker. Note that this happens more readily in the small N limit. Features in the ω = 0.01 trace at

small N are remarkably similar to those found in the classical limit, showing that electrons are nearly localized for small N. (The zero of the y axis is offset for clarity, and the

normalization of the classical trace is arbitrary.) b,c, gT for N= 9, rs ≈ 15 (ω = 0.01), keeping an electron fixed on the outer ring (r0 ≈ (37,0)), for L= 0, S= 3/2 (b, the

usual ground state) and L= 0, S= 7/2 (c). Increasing rs, particularly for small N, often brings a strongly polarized state very close in energy to the ‘usual’ ground state. In

the case shown, the two states become essentially degenerate (E= 1.464651H ∗ ) within statistical errors. The extent of Wigner localization is clearly stronger for the

S= 7/2 state.

non-interacting ‘shell effects’ produce strong peaks for closed-shell
configurations (N = 6, 12, 20). At larger rs, the peaks weaken
considerably, reducing mesoscopic fluctuations in �2E. For similar
rs, shell effects are more strongly affected for small N , whereas
their remnant persists for large N . For comparison, we plot
the addition energy in the classical limit24,25 obtained from the
ground-state energies in ref. 24. The remarkable similarity to our
quantum result for small N at the largest rs is strong evidence for
electron localization.

Strong correlations can shuffle the energy ordering of different
quantum states at fixed N . However, for ω > 0.01, the ground
state remains consistent with Hund’s first rule (except for N = 3).
For smaller ω, we see a tendency towards violation of this rule,
primarily for small N (which, in general, are more affected by
strong correlations), as in the following example. For N = 9, the
Hund’s rule ground state has (L,S) = (0,3/2). We find that for

ω = 0.01, the highly polarized state (0,7/2) becomes degenerate
with the usual ground state (within our numerical accuracy). (All
other (L,S) states lie higher in energy.) Note that S = 7/2 requires
promotion between non-interacting shells, and so lies much higher
in energy in the weakly interacting limit. At large rs, this difference
is overcome by the gain in interaction energy. The pair density gT

for both these N = 9 states is shown in Fig. 3. The more-polarized
state is clearly more localized; we find that, as expected, this is
generally the case because exchange keeps the electrons apart.

The scenario that emerges here is significantly different from
that for the bulk. The gradual emergence of the radial oscillations is
connected to the fact that the translational symmetry is necessarily
broken, and so the interactions can readily amplify existing
inhomogeneities. The development of the addition-energy curves
further supports this point: the structure caused by quantum
interference is rapidly suppressed by the interactions leading to
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surprisingly smooth behaviour over a wide range of rs. Thus, strong
correlations and incipient localization should be taken into account
for a very broad range of interaction strength.

METHODS

As a starting point, we use the Kohn–Sham orbitals obtained from a density

functional calculation done in the local density approximation. We then carry

out a VMC calculation using a trial wavefunction, ΨT, which is a linear

combination of products of up- and down-spin Slater determinants of the

Kohn–Sham orbitals multiplied by a Jastrow factor. The Jastrow factor

effectively describes the dynamic correlation between the electrons coming

from their mutual repulsion, whereas the near-degeneracy correlation is taken

into account by having more than one determinant. We optimize the Jastrow

parameters and determinant coefficients by minimizing the variance of the

local energy26,27. Finally, we use fixed-node DMC calculations9,28 to project the

optimized many-body wavefunction onto a better approximation of the true

ground state, an approximation that has the same nodes as ΨT.

The fixed-node DMC energy is an upper bound to the true energy, and

only depends on the nodes of the trial wavefunction obtained from VMC. We

have calculated the energy E(N ,L,S) of a circular quantum dot for each N

with angular momentum L and spin S—all good quantum numbers for our

model. (Sz is also a good quantum number, and all our calculations are done

for Sz = S; however, E is independent of Sz .) We investigated all possible

combinations of L and S for the low-lying states, and the combination yielding

the lowest DMC energy, EG, was taken as the ground state for that N . For

expectation values of operators that do not commute with the

hamiltonian—for example, the density or the pair density—we use an

extrapolated estimator9,29 (denoted FQMC for an operator F), which eliminates

the inaccuracy coming from the first-order error in the trial wavefunction.

FQMC is defined as 2FDMC −FVMC when FDMC ≥ FVMC, and as

F2
DMC/FVMC otherwise.

In the multi-determinant expansion of ΨT, we only keep Slater

determinants formed from the lowest energy Kohn–Sham orbitals for all of the

results shown here. Our study is currently limited to rs ≤ 18 for technical

reasons. The most serious is the failure of the VMC optimization, as many

Slater determinants need to be included for stronger interactions.

For two cases, corresponding to one moderate and one large rs, we have

done preliminary calculations with higher orbitals by including all

determinants involving promotion of two electrons across a shell gap (10

configuration-state functions for N = 20). This allows for a change in the nodes

of ΨT. We find that the change in the energy, as well as the change in density

and pair density, is small, although somewhat larger for greater rs. Thus, we

believe that the fixed-node error in our calculations is under control.
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