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Social structure description of epidemic propagation with a mean-field game paradigm
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As emphasized by the recent pandemic crisis, the design of coherent policies against epidemic propagation
is of major importance and required to model both epidemic quantities and individuals behavior because the
latter has a strong influence on the former. To address this issue, we consider the spread of infectious diseases
through a mean field game version of a SIR compartmental model with social structure, in which individuals
are grouped by their age class and interact together in different settings. In our game theoretical approach,
individuals can choose to limit their contacts if the epidemic is too virulent, but this effort comes with a social
cost. We further compare the Nash equilibrium obtained in this way with the societal optimum that would be
obtained if a benevolent central planner could decide on the strategy of each individual, as well as to the more
realistic situation where an approximation of this optimum is reached through social policies such as lockdown.
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As Covid-19 has made rather explicit in the last few years,
possessing good prediction tools for the dynamics of virus
infections is mandatory if one wishes to design public poli-
cies making it possible to effectively mitigate the negative
impact of an epidemic. Since the early twentieth century,
many models have been proposed to address this issue, one of
the simplest being the SIR (Susceptible-Infected-Recovered)
compartment model [1] and its variations [2], which has
been recently refined to take into account the structure of
social contacts [3,4] or spatial/geographic aspects of the
dynamics [5,6].

For virus epidemics like Covid-19, with very fast dy-
namics, one important difficulty met by epidemiologists can
already be illustrated on the SIR model. Noting S, I, and R the
relative proportion of agents in the three possible states (re-
spectively “Susceptible”, “Infected”, and “Recovered”), the
time dependence of these “state variables” follow the set of
equations

Ṡ = −χS(t )I (t ),

İ = (χS(t ) − ξ )I (t ), (1)

Ṙ = ξ I (t ),

which are characterized by two “extrinsic” parameters, (that
is, external parameters fixed outside of the model), the recov-
ery rate ξ, and the contact rate χ .

Given the height of the stakes posed by the control of the
Covid-19 epidemics in the last couple of years, both from
a public health and economic point of view, major efforts
have been invested by the epidemiologist community to ex-
tract these parameters, or their counterpart in more complex
models, from the actual data observed on the field. However,
if ξ is mainly fixed by biological considerations, and thus can
be considered as essentially constant in time, the contact rate
χ on the other hand depends a lot on the agent’s behavior (i.e.,

whether they actually meet or not) which has a dynamic of its
own. This dynamic is furthermore coupled to the dynamics
of the epidemic itself since people will limit or increase their
contacts depending on whether or not they feel at risk from
the epidemic. This implies that it is essentially impossible to
fit the time dependence of χ on past data. In models used
to advise public policies, this time dependence is thus either
simply ignored, or involves a lot of guesswork, leading to
predictions that can be trusted only for a rather short amount
of time (see nevertheless [7,8]). To avoid such a situation, it
is necessary to introduce models whose extrinsic parameters
have no time dependence (on the time scale of the epidemic),
and which can therefore be fitted in a reliable way on field
data. In other words, it is necessary to make intrinsic the
dynamics of parameters such as χ (i.e., to make them internal
parameters computed within the model). To achieve this, a
game theoretical approach is required, and the one that we will
follow here is provided by mean field game (MFG) theory.

Introduced by Lasry and Lions a decade ago [9–11] and in-
dependently by Huang, Malhamé, and Caines [12], mean field
games (MFG) focus on the derivation of a Nash equilibrium
within a population containing a larger number of individu-
als. Reader can look at [13–15] for a complete mathematical
description, and to [16,17] for an introduction designed for
physicists. Applications of MFG, include finance [18], eco-
nomics [19], and opinion dynamics [20] among others. The
introduction of MFG models to describe epidemic dynamics
has been pioneered by Turinici et al. to describe vaccination
strategies [21] or the dynamics of the parameter χ (t ) in the
simple SIR model [22].

The simple toy models addressed in [22] are, however,
presumably still too schematic to be relevant from a practical,
public policy point of view. The goals of this Letter are to
show that a good degree of complexity can be included in
these MFG models, and in particular that we can implement
a description of the social structure of society in which the
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epidemics develop. Furthermore, we shall see that with our
mean field game approach, question of direct practical im-
portance, such as defining the best government strategy with
respect to confinement and deconfinement policies, can be
addressed.

We therefore consider a SIR model with a structure of
social contacts proposed in [3,4] to get a more detailed de-
scription of the society at a mesoscopic scale. Following [3],
we make a differentiation between individuals according to
their age. Here we choose to introduce three age classes:
“young,” “adult,” and “retired” people but a more refined de-
scription could easily be implemented. Furthermore, we split
the society in four main settings where individuals have con-
tacts with others: the schools, the households, the community,
and the workplaces. Thus the dynamics of the epidemic may
differ for different age classes and the interactions between
individuals (of the same class or not) may differ in different
settings.

To model the interactions, following [3], we introduce the
parameters Mγ

αβ which measure the average frequency of con-
tacts with someone of age class β for an individual of age
class α in the setting γ . To enforce the sum rule imposed by
the fact that a contact between two agents involves both of
them in a symmetric way, we make a slight variation here
with respect to [3] and set Mγ

αβ = W γ

αβ · Kβ where W γ

αβ is a
symmetric matrix and Kβ is the proportion of individuals of
age class β in the population. Physically, W γ

αβ can be seen
as the “willingness of contact” between an individual of age
class α and another of age class β in the setting γ . We assume
here that this symmetric matrix is built as W γ

αβ = w
γ

αβ · w
γ

βα,

where w
γ

αβ is the “willingness” of an individual of age class α

to have contact with someone of age class β (in the setting γ ).
In our game theoretical approach, we assume that indi-

viduals of age class α control their “willingness of contact”
with other individuals in each setting. We therefore write
w

γ

αβ = w
γ (0)
αβ nγ

α (t ), where w
γ (0)
αβ denotes this “willingness” in

the absence of epidemic (similarly for W γ (0)
αβ and Mγ (0)

αβ ), and
nγ

α (t ) ∈ [nγ

α,min, 1] is a time dependent coefficient measuring
the effort made by the individual to limit contact because of
the epidemic situation, and which is assumed to vary between
a value nγ

α,min representing the maximum effort that can be
expected from the agent and one corresponding to the base
willingness in the absence of effort. Notice that, for simplicity,
we use nγ

α instead of nγ

αβ , that is individuals do not change
their behavior according to the age class of the contact β but
only according to the setting γ (a β dependence of n could
easily be implemented to this model and only slightly change
the equations).

Indexing by α the proportion of susceptible/infected/
recovered people of age class α, and denoting by q the prob-
ability of transmission (of the virus) per effective contact
(between a susceptible and an infected), the SIR equa-
tions (with n = 3 age classes) read [3]

Ṡα = − λ̄α (t )Sα (t ),

İα = + λ̄α (t )Sα (t ) − ξ Iα (t ), (2)

Ṙα =ξ Iα (t ),

where the “force of infection” λ̄α (t ) corresponds to q time, the
average number of infected people met by a susceptible agent
of age class α during dt , and is written as

λ̄α (t ) ≡ q

[
n∑

β=1

∑
γ

n̄γ
α (t ) n̄γ

β (t ) Mγ (0)
αβ Iβ (t )

]
, (3)

with n̄γ
α the average value of nγ

α over agents in the age class
α. In the following, we will denote λ (without bar above)
when we focus on the force of infection seen by a reference
individual, λα (t ) ≡ q[

∑n
β=1

∑
γ nγ

α (t )n̄γ

β (t )Mγ (0)
αβ Iβ (t )].

In our mean field game version of this model, the state
variable of an agent kα of age class α is her status xkα

∈
{sα =susceptible, iα = infected, rα = recovered}. The control
parameters of individuals of age class α are the contact will-
ingness nγ

α (t ), and each individual kα which is susceptible at
time t (i.e., xkα

= sα) will adjust the contact willingness to
minimize an inter-temporal cost that we take of the form

Cα ({nγ
α (·)}, t ) ≡

∫ T

t

[
λα (s)r̃I,α (I (s)) + fα

({
nγ

α (s)
})]

× (
1 − φI

α (s)
)
ds. (4)

In this equation

r̃I,α (I (s)) = rI,α + gα (I (s)) (5)

is the total cost of infection, which includes a base cost rI,α

(which we assume increases with the age class α, model-
ing that we suffer more from infection when we are older),
and an additional cost gα (I (s)) which models the saturation
of the sanitary system. fα ({nγ

α (s)}) measures the cost (both
psychological and financial) associated with the limitation of
social contacts (we assume this cost to be decreasing, with
a positive second derivative), and φI

α (t ) is the probability for
our reference individual of age class α to be infected before
t , so that an infection for this individual happens between t
and t + dt with a probability (1 − φI

α (t ))λα (t )dt . Note that in
principle one should also specifically model the behavior of
infected people, as this could vary from a completely egoistic
approach where they stop making any effort to a very altruistic
one where infected people completely isolate from the rest of
population. In epidemics like Covid-19, however, most of the
transmission is due to a small part of the infected people not
aware of their infectious status. Our model corresponds to the
limit where this proportion is extremely small, and for which
q, the probability of transmission of the virus, integrates this
probability.

To solve this optimization problem, we follow a standard
approach in this context [15], and introduce the value function

Uα (t ) = min
{nγ

α (·)}
Cα

({
nγ

α (·)}, t
)
, (6)

which is thus the minimal price (in stochastic average) that a
susceptible agent (at t) can pay between t and the end of the
game. Using the Bellman equation, which states that, for any
intermediate time ti, the optimal path between t and T can be
constructed as the concatenation of optimal paths between t
and ti and between ti and T followed by an optimization of the
state of the system at ti we get the Hamilton-Jacobi-Bellman
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equation of our mean field game

−dUα (t )

dt
= min

{nγ
α (t )}

[
λα (t )(r̃I,α (I (t )) − Uα (t )) + fα

({
nγ

α (t )
})]

.

(7)
Then, the optimal strategy nγ ∗

α (t ) is expressed as

{nγ ∗
α (t )} = argmin

{nγ
α (t )}

[
λα (t )(r̃I,α (I (t )) − Uα (t )) + fα

({nγ
α (t )

})]
.

(8)
We stress, however, that in Eq. (4), the dynamic of the

infection Eqs. (2) and (3) at time t , is fixed by the strategies
n̄γ

α (s < t ), followed (on average) by the total population of
agents, which is a priori distinct from the one nγ ∗

α followed
by the individual optimizing the cost Eq. (4). In all rigor, this
cost should be written as Cα ({n̄γ

α }, {nγ
α }, t ), and the situation

for which for all settings γ and all age classes α one has

nγ ∗
α = n̄γ

α (9)

corresponds to a Nash equilibrium, in the sense that an indi-
vidual agent has no interest in deviating to another strategy if
this strategy is followed by the rest of the agents. ‘solving”
our mean field game therefore amounts to: (i) Solve the rate
equations (2) assuming the general population strategy {n̄γ

α }
given. This in particular will determine epidemic quantities
such as Iα (t ), from which λα (s) and φI

α (t ) = 1 − e
∫ t

0 λα (s)ds can
be derived, making it possible to compute the cost Eq.(4) for a
given individual strategy {nγ

α (t )}; ( ii) Solve the optimization
problem for {nγ

α (t )} defined by the cost Eq. (4) and deduce
from it {nγ ∗

α }, the optimal {nγ
α } for a given individual; and

(iii) Impose the self consistent equation (9) that defines the
Nash equilibrium of our MFG. In practice, this third step (iii)
can be realized in different ways, either using a recursive
sequence until (9) is fulfilled or using a gradient descent,
slowly moving the general population strategy to reach the
same fixed point where nγ ∗

α = n̄γ
α . We use both methods in

our numerical simulations.
Since the time dependence of the {nγ

α } is now an outcome
of the description, our MFG model defined by the dynamics
Eqs. (2) and (3) and the cost function Eq. (4) clearly meet the
criterion that all the extrinsic parameters characterizing it are
time independent, and could in principle be fitted on field data.
The actual extraction of these parameters is, of course, well
beyond the scope of this work, and in the following, we illus-
trate the behavior of our MFG for a “reasonable choice” of this
parametrization (these quantities are rather generic, and the
observed behaviors are a priori typical, which was checked
by running many simulations with different parameters).

As mentioned above, we consider four settings (S =
schools, W = workplaces, C = community, and H = house-
holds) and three age classes (y = youth, a = adult, and r =
retired). For the cost of infection Eq. (5) we take

r̃I,α (I (t )) = κα

[
rI

(
exp

[
αsat

I (t ) − Isat

Isat

])]
, (10)

where the factors κα account for the fact that older agents are
more impacted by the infection, while rI and αsat are both
constant modeling, respectively, the usual cost of infection
and the impact of saturation on the cost. The additional cost
is exponential with a threshold when we reach the saturation
at I = Isat. Finally, for the cost of the contact willingness

FIG. 1. Evolution of the epidemic quantities and contact willing-
ness with rI = 1 (solid line) and rI = 5 (dashed line). Upper panel:
evolution of proportion of infected by age class. Lower panel (left
to right): evolution of contact willingness of individuals according to
their age class in community, households, schools (for the young),
and workplaces (for the adults).

reduction fα ({nγ
α }) we take a form inspired from [22]

fα ({nγ
α (t )}) =

∑
γ

[(
1

nγ
α (t )

)μγ

− 1

]
, (11)

where μγ models variability of the “attachment” to the setting
γ , as it is for example easier to reduce contacts at work rather
than inside families.

Figure 1 shows the dynamics of the epidemic together with
the choices made by individuals for their contact willingness
for both a relatively moderate cost for the infection (rI = 1)
and a much stronger one (rI = 5), with the choice of param-
eters given in Table I. The simulations have been obtained
using a gradient descent on the variable {nγ

α } of the cost C to
reach the Nash equilibrium. In the case rI = 1, we see in this
figure that there are significant efforts made by individuals
when I (t ) exceed the threshold Isat. More precisely, retired
people significantly reduce their contacts because the cost
associated with the infection is for them very high and this
reduction is done, in particular in the community setting, be-
cause this is the easiest place to reduce one’s contacts. On the
other hand, young people, who take no significant risk with
the disease, barely modify their behavior, while the adults are
in an intermediate situation. For rI = 5, the cost of infection
is sufficiently high so that one does not reach the saturation
Isat, the epidemic is lower and slower.

In the previous equilibrium analysis, each agent performs
a personal, eventually egoistic, optimization. A “benevolent
global planner”, i.e., a well meaning government with full
empowerment, would, on the other hand, attempt to reach a
“societal optimum” [22–24], i.e., to optimize the global cost
of the entire society, which would amount to solve :

min
{n̄γ }

Cglob
({

n̄γ
α

}) ≡ min
{n̄γ }

∑
α

[
Kα × Cα

({
n̄γ

α

}
,
{
n̄γ

α

})]
.

(12)
The difference between this new minimization and the Nash
equilibrium discussed above is referred to as “the cost of
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TABLE I. Table of parameters used in our simulations. The matrix entries Mγ

αβ correspond to the average frequency of contacts (per week)
between an individual of age class α and someone of age class β in the setting γ . κα is the coefficient appearing in r̃I,α . Kα is the proportion of
the population in each age class. nγ

min is the minimum contact willingness in each setting γ , while μγ weighs the cost of contact reduction in
each setting. (Sα (0), Iα (0)) are the initial conditions for each age class. ξ is the recovery rate (per week), q the transmission rate per contact.
Il , Id are the thresholds for the optimal lockdown and σ its level.

MS MW MC MH κα Kα nγ

min μγ⎛
⎝100 0 0

0 0 0
0 0 0

⎞
⎠

⎛
⎝0 0 0

0 75 0
0 0 0

⎞
⎠

⎛
⎝12.5 25 12.5

12.5 25 12.5
12.5 25 12.5

⎞
⎠

⎛
⎝ 15 25 10

12.5 32.5 5
10 10 30

⎞
⎠ (1,10,100) (0.25, 0.5, 0.25) ( 1

3 , 1
5 , 1

5 , 1
2 ) (2,2,1,3)

Sα (0) Iα (0) (Isat , αsat ) ξ q Il Id σ

(0.99, 0.99, 0.99) (0.01, 0.01, 0.01) (0.01,0.01) 1.2 0.02 0.1 4 × 10−4 0.39

anarchy”, because there is no cooperation between individuals
in the Nash equilibrium contrary to the societal optimum case.
We compute it with a gradient descent on the cost Cglob, and
we plot the dynamics on Fig. 2.

In practice however, it is largely impossible for a gov-
ernment to control the detailed behavior of each individual,
especially in democratic countries, and even if this was techni-
cally feasible, it would involve an important coordination cost
that would have to be included in the epidemic cost Eq. (4).
Government will therefore use median mode of actions, such
as lockdown, to approach the societal optimum at a reason-
able coordination (and democratic) cost. We now address the
question of how the lockdown policy can be used to approach
as well as possible the societal optimum.

We therefore assume that above a certain threshold of
infection, Il , a global planner imposes a reduction of the
maximum contact willingness nγ

αl , that we assume of the form
nγ

αl = σnγ

α,min + (1 − σ ), (σ ∈ [0, 1]) in each setting for each
individual. As the proportion of infected decreases we assume
the lockdown is lifted when I (t ) goes below a value Id < Il ,
which is assumed lower than Il to avoid unrealistic oscillations
around Il . For a given value of the thresholds and of the

FIG. 2. Evolution of the epidemic quantities and contact willing-
ness for the societal optimum (dashed line) and the optimal lockdown
policy (solid line). Upper panel: evolution of proportion of infected
by age class (main panel) and on average (inset). Lower panel (left to
right): evolution of contacts willingness of individuals according to
their age class in community, households, schools, and workplaces.

nγ

αl we can compute the Nash equilibrium as in our original
approach, and we can then perform a gradient descent on
these parameters (σ, Id , Il ) to reach their optimal value, i.e.,
the optimal lockdown policy.

We show in Fig. 2 the numerical simulation for the societal
optimum and for the optimal lockdown policy, with the same
parameters as Fig. 1 and rI = 1, giving for the optimal lock-
down policy Il = 0.1 = Isat , Id = 4 × 10−4, and σ = 0.39.
For the societal optimum the cooperation appears clearly: at
the epidemic peak there is a mutual action of all individuals
to simultaneously limit their contacts, especially in the com-
munity and households where adults and young people make
efforts in order to limit the number of infected retired people,
even if the efforts in households are costly. On the other hand,
less efforts are made in schools or in workplaces because this
affects retired people less. These combinations of efforts lead
to a very low cost for the entire society.

For the Nash equilibrium under optimal constraints, we see
in Fig. 2 that adults and young people essentially follow the
constraints imposed by the lockdown in each setting (this is
the straight solid lines). On the other hand, to achieve better
protection for themselves, retired people go beyond the lock-
down in the community and households, actually following
a strategy very similar to the one of the societal optimum.
This lockdown has a strong effect on the epidemic but lacks
the coordination of the optimum societal case. This leads to a
number of infected adults and young which is lower than the
“societal optimum” while it is higher for retired people.

To conclude, it might be useful to introduce a “figure of
merite” of a given policy P

M(P ) = Cglob(P ) − Cglob(societal optima)

Cglob(business as usual) − Cglob(societal optima)
,

(13)

which is thus such that M(P ) is zero if P is the societal optima
and one if P is the “business as usual” strategy for which no
adjustment is made to the contact between agents. From our
simulations with rI = 1, for which Cglob(business as usual) =
266 and Cglob(societal optima) = 101, we get M(P ) = 0.12
for the unconstrained Nash equilibrium and 0.06 for the
optimal lockdown policy. However, nonoptimal lockdown
policies are, most of the time, less effective than the uncon-
strained Nash, and can typically have a M which ranges from
values of the order of (or in the best case scenario slightly
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below) the unconstrained Nash value (when the thresholds are
such that they do not affect the epidemics dynamics much) to
values of order one, or even slightly higher.

Although these numbers apply obviously only to the spe-
cific model and to the specific set of parameters we have used
as an illustration here, we have no doubt that the qualitative
features observed are very general in nature. Namely, the Nash
equilibrium is already a very significant improvement with
respect to the “business as usual approach”, and if, on the
one hand, an optimized lockdown strategy can further close
the gap toward the societal optimum, sub-optimal lockdown
strategies can actually “degrade” the situation with respect to
the basic Nash equilibrium.

As a final remark, we stress that it should not be assumed,
and we certainly do not imply here, that the Nash equilibrium

is the “natural outcome” of the epidemic process that would be
reached in the absence of any public policy. Indeed, our model
assumes that the agents possess both perfect information and
the technical resources to compute the Nash equilibrium,
which we cannot expect them to have in practice. On the
other hand, gathering this information and developing the
technical tools to compute the Nash equilibrium appears like a
reachable goal for a centralized public agency. If enough trust
is built between the government and the individual agents,
making that information public can be enough to coordinate
the ensemble of agents around the Nash equilibrium. This,
as well as the optimization of lockdown or similar policies
improving on the basic Nash equilibrium requires developing
the necessary conceptual tools. We hope this work provides a
useful step in that direction.

[1] William O. Kermack, A. G. McKendrick, and G. T. Walker, A
contribution to the mathematical theory of epidemics, Proc. R.
Soc. London A 115, 700 (1927).

[2] H. W. Hethcote, The mathematics of infectious diseases, SIAM
42, 599 (2000).

[3] L. Fumanelli, M. Ajelli, P. Manfredi, A. Vespignani, and S.
Merler, Inferring the structure of social contacts from demo-
graphic data in the analysis of infectious diseases spread, PLoS
Comput. Biol. 8, e1002673 (2012).

[4] D. Mistry, M. Litvinova, A. P. y Piontti, M. Chinazzi, L.
Fumanelli, M. F. C. Gomes, S. A. Haque, Q.-H. Liu, K. Mu, X.
Xiong, M. E. Halloran, I. M. Longini Jr., S. Merler, M. Ajelli,
and A. Vespignani, Inferring high-resolution human mixing
patterns for disease modeling, Nat. Commun. 12, 323 (2021).

[5] S. Merler, M. Ajelli, A. Pugliese, and N. M. Ferguson, De-
terminants of the spatiotemporal dynamics of the 2009 h1n1
pandemic in europe: Implications for real-time modelling,
PLoS Comput. Biol. 7, e1002205 (2011).

[6] S. Eubank, H. Guclu, V. S. A. Kumar et al., Modelling disease
outbreaks in realistic urban social networks, Nature (London)
429, 180 (2004).

[7] N. M. Ferguson, D. Laydon, G. Nedjati-Gilani et al.,
Impact of non-pharmaceutical interventions (NPIs) to reduce
covid-19 mortality and healthcare demand, Imperial College
London (2020), https://www.imperial.ac.uk/media/imperial-
college/medicine/sph/ide/gida-fellowships/Imperial-College-
COVID19-NPI-modelling-16-03-2020.pdf.

[8] R. Dutta, S. N. Gomes, D. Kalise, and L. Pacchiardi, Using mo-
bility data in the design of optimal lockdown strategies for the
covid-19 pandemic, PLoS Comput. Biol. 17, e1009236 (2021).

[9] J.-M. Lasry and P.-L. Lions, Mean field games. 1–the stationary
case, Comptes Rendus Mathematique 343, 619 (2006).

[10] J.-M. Lasry and P.-L. Lions, Mean field games. 2–finite horizon
and optimal control, Comptes Rendus Mathematique 343, 679
(2006).

[11] J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math. 2,
229 (2007).

[12] M. Huang, R. Malhame, and P. Caines, Large population
stochastic dynamic games: Closed-loop mckean-vlasov systems
and the nash certainty equivalence principle, Commun. Inf.
Syst. 6, 115 (2006).

[13] P. E. Caines, M. Huang, and R. P. Malhame, in Mean Field
Games, edited by T. Bąsar and G. Zaccour, Handbook of Dy-
namic Game Theory (Springer, Cham, 2018), pp. 345–372.

[14] R. Carmona and F. Delarue, Probabilistic Theory of Mean Field
Games with Applications I (Springer, 2018).

[15] D. A. Gomes, J. Mohr, and R. R. Souza, Continuous time finite
state mean field games, Appl. Math. Optim. 68, 99 (2013).

[16] I. Swiecicki, T. Gobron, and D. Ullmo, Schrödinger Ap-
proach to Mean Field Games, Phys. Rev. Lett. 116, 128701
(2016).

[17] D. Ullmo, I. Swiecicki, and T. Gobron, Quadratic mean field
games, Phys. Rep. 799, 1 (2019).

[18] O. Gueant, J.-M. Lasry, and P.-L. Lions, Mean Field Games
and Applications, Paris-Princeton Lectures on Mathematical Fi-
nance 2010 (Springer, Berlin Heidelberg, 2011), pp. 205–266.

[19] P. Chan and R. Sircar, Bertrand and cournot mean field games,
Appl. Math. Optim 71, 533 (2015).

[20] D. Bauso, R. Pesenti, and M. Tolotti, Opinion dynamics and
stubbornness via multi-population mean-field games, J. Optim.
Theory Appl. 170, 266 (2016).

[21] L. Laguzet, G. Turinici, and G. Yahiaoui, Equilibrium in an
individual - societal SIR vaccination model in presence of
discounting and finite vaccination capacity, in New Trends in
Differential Equations, Control Theory and Optimization, edited
by Viorel Barbu, Catalin Lefter, and Ioan I. Vrabie (World
Scientific Publishing Co, 2016), pp. 201–214.

[22] R. Elie, E. Hubert, and G. Turnici, Contact rate epidemic control
of covid-19 : An equilibrium view, Mathematical Modelling of
Natural Phenomena 15, 35 (2020).

[23] R. Morton and K. H. Wickwire, On the optimal control of a
deterministic epidemic, Adv. Appl. Probab. 6, 622 (1974).

[24] K. H. Wickwire, Optimal isolation policies for deterministic
and stochastic epidemics, Math. Biosci. 26, 325 (1975).

L062301-5

https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1137/S0036144500371907
https://doi.org/10.1371/journal.pcbi.1002673
https://doi.org/10.1038/s41467-020-20544-y
https://doi.org/10.1371/journal.pcbi.1002205
https://doi.org/10.1038/nature02541
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
https://doi.org/10.1371/journal.pcbi.1009236
https://doi.org/10.1016/j.crma.2006.09.019
https://doi.org/10.1016/j.crma.2006.09.018
https://doi.org/10.1007/s11537-007-0657-8
https://doi.org/10.4310/CIS.2006.v6.n2.a2
https://doi.org/10.1007/s00245-013-9202-8
https://doi.org/10.1103/PhysRevLett.116.128701
https://doi.org/10.1016/j.physrep.2019.01.001
https://doi.org/10.1007/s00245-014-9269-x
https://doi.org/10.1007/s10957-016-0874-5
https://doi.org/10.1051/mmnp/2020022
https://doi.org/10.2307/1426183
https://doi.org/10.1016/0025-5564(75)90020-6

